home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 15
/
CU Amiga Magazine's Super CD-ROM 15 (1997)(EMAP Images)(GB)[!][issue 1997-10].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
gdevcdj.c
< prev
next >
Wrap
C/C++ Source or Header
|
1997-03-18
|
115KB
|
3,917 lines
/* Copyright (C) 1991, 1995, 1996, 1997 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* gdevcdj.c */
/* H-P and Canon colour printer drivers */
/****************************************************************
* The code in this file has gotten completely out of hand.
* Too many users have made too many "improvements" without
* regard to the overall structure; the last three "improvements"
* required me to spend several hours fixing each one so that
* the code worked again at all. For this reason, no further
* changes to this file will be accepted. I am planning eventually
* to get these drivers rewritten from scratch.
* L. Peter Deutsch
* Aladdin Enterprises
* February 28, 1996
****************************************************************/
/*
* Important compilation notes (YA).
*
* You may also try the cdj550cmyk driver after having defined
* USE_CDJ550_CMYK and added the needed definition in devs.mak. Not tried!
* (I have a BJC!) If you ty that, please report success/failure to me,
* Yves.Arrouye@imag.fr. Also note that modes descriptions of CMYK printing
* is done under the BJC section of devices.doc.
*
* CMYK to RGB conversion is made a la GhostScript unless you define
* the preprocessor symbol USE_ADOBE_CMYK_RGB.
*
* Ghostscript: R = (1.0 - C) * (1.0 - K)
* Adobe: R = 1.0 - min(1.0, C + K)
*
* (and similarly for G and B). Ghostscript claims its method achieves
* better results.
*
* For the BJC drivers, define BJC_DEFAULT_CENTEREDAREA if you want to
* have the same top and bottom margins (default to use the tallest
* imageable area available, usually with a top margin smaller than
* the bottom one). Defining USE_RECOMMENDED_MARGINS has the same
* effect and also sets these margins to 12.4 mm. Other compilation
* defines are explained in devices.doc.
*
* You can also define BJC_INIT_800_AS_600 to not use BJC-800-specific code
* in the page initialization sequence (normally not useful to you at all,
* just for my debugging of the driver margins).
*
*/
#include "std.h" /* to stop stdlib.h redefining types */
#include <stdlib.h> /* for rand() */
#include "gdevprn.h"
#include "gdevpcl.h"
#include "gsparam.h"
#include "gsstate.h"
/* Conversion stuff. */
#include "gxlum.h"
/* Canon stuff */
#include "gdevbjc.h"
/***
*** This file contains multiple drivers. The main body of code, and all
*** but the DesignJet driver, were contributed by George Cameron;
*** please contact g.cameron@biomed.abdn.ac.uk if you have questions.
* 1 - cdj500: HP DeskJet 500C
* 2 - cdj550: HP DeskJet 550C
* 3 - pjxl300: HP PaintJet XL300
* 4 - pj: HP PaintJet
* 5 - pjxl: HP PaintJet XL
* 6 - declj250: DEC LJ250
*** The DesignJet 650C driver was contributed by Koert Zeilstra;
*** please contact koert@zen.cais.com if you have questions.
* 7 - dnj650c HP DesignJet 650C
*** The LaserJet 4 driver with dithering was contributed by Eckhard
*** Rueggeberg; please contact eckhard@ts.go.dlr.de if you have questions.
* 8 - lj4dith: HP LaserJet 4 with dithering
*** The ESC/P driver (for Epson ESC/P compatible printers) was written by
*** Yoshio Kuniyoshi <yoshio@nak.math.keio.ac.jp>, but is not maintained at
*** the moment.
* 9 - esc/p: Epson ESC/P-compatible printers
*** The BJC600 driver (which also works for BJC4000) was written first
*** by Yoshio Kuniyoshi <yoshio@nak.math.keio.ac.jp> and later modified by
*** Yves Arrouye <Yves.Arrouye@imag.fr>. The current driver has been
*** completely rewritten by me (YA) for good color handling.
* 10 - bjc600: BJC 600//4000 printers
*** The BJC800 driver is based on the bjc600 one. By YA too.
* 11 - bjc800: BJC 800 printer
***/
/*
* All of the HP-like drivers have 8-bit (monochrome), 16-bit and 24-bit
* (colour) and for the DJ 550C 32-bit, (colour, cmyk mode)
* options in addition to the usual 1-bit and 3-bit modes
* It is also possible to set various printer-specific parameters
* from the gs command line, eg.
*
* gs -sDEVICE=cdj550 -dBitsPerPixel=16 -dDepletion=1 -dShingling=2 tiger.ps
*
* Please consult the appropriate section in the devices.doc file for
* further details on all these drivers.
*
* All of the BJC-like drivers have 1-bit and 8-bit monochrome modes, 8-bit,
* 16-bit, 24-bit and 32-bit colour cmyk mode (the 8-bit monochrome mode
* is called "4-bit". If you want to add a CMYK printer, look at the
* bjc6000/bjc800 devices declarations and initialization.
*
* If you want to support different color components for the same depth
* on a non-CMYK printer, look how this is done for CMYK printers in
* cdj_set_bpp.
*
*/
/*
* This taken from gsdparam.c. I hope it will be useable directly some day.
*
*/
#define BEGIN_ARRAY_PARAM(pread, pname, pa, psize, e)\
switch ( ncode = pread(plist, (oname = pname), &pa) )\
{\
case 0:\
if ( pa.size != psize )\
code = gs_error_rangecheck;\
else {
/* The body of the processing code goes here. */
/* If it succeeds, it should do a 'break'; */
/* if it fails, it should set ecode and fall through. */
#define END_PARAM(pa, e)\
}\
goto e;\
default:\
code = ncode;\
e: param_signal_error(plist, oname, code);\
case 1:\
pa.data = 0; /* mark as not filled */\
}
private int cdj_param_check_bytes(P5(gs_param_list *, gs_param_name, const byte *, uint, bool));
private int cdj_param_check_float(P4(gs_param_list *, gs_param_name, floatp, bool));
#define cdj_param_check_string(plist, pname, str, defined)\
cdj_param_check_bytes(plist, pname, (const byte *)str, strlen(str), defined)
/*
* Drivers stuff.
*
*/
#define DESKJET_PRINT_LIMIT 0.04 /* 'real' top margin? */
#define PAINTJET_PRINT_LIMIT 0.0 /* This is a guess.. */
#define ESC_P_PRINT_LIMIT 0.335
/* Margins are left, bottom, right, top. */
#define DESKJET_MARGINS_LETTER 0.25, 0.50, 0.25, 0.167
#define DESKJET_MARGINS_A4 0.125, 0.50, 0.143, 0.167
#define LJET4_MARGINS 0.26, 0.0, 0.0, 0.0
/* The PaintJet and DesignJet seem to have the same margins */
/* regardless of paper size. */
#define PAINTJET_MARGINS 0.167, 0.167, 0.167, 0.167
#define DESIGNJET_MARGINS 0.167, 0.167, 0.167, 0.167
/*
* With ESC/P commands, BJC-600 can print no more than 8 inches width.
* So it can't use full width of letter size paper. Since non printable
* left side area is 0.134 inch, we set up margins as follows.
*
* Note to readers: the bjc drivers series do *not* use ESC/P commands
* but raster ops. Configuration of these drivers can be done through
* the gdevbjc.h file.
*
*/
#define ESC_P_MARGINS_LETTER 0.134, 0.276+0.2, 0.366+0.01, 0.335
#define ESC_P_MARGINS_A4 0.134, 0.276+0.2, 0.166+0.01, 0.335
/* Define bits-per-pixel for generic drivers - default is 24-bit mode */
#ifndef BITSPERPIXEL
# define BITSPERPIXEL 24
#endif
#define W sizeof(word)
#define I sizeof(int)
#define invert_word(v)\
((v) >> 24) + (((v) >> 8) & 0xff00L) +\
(((word)(v) << 8) & 0xff0000L) + ((word)(v) << 24)
/* Printer types */
#define DJ500C 0
#define DJ550C 1
#define PJXL300 2
#define PJ180 3
#define PJXL180 4
#define DECLJ250 5
#define DNJ650C 6
#define LJ4DITH 7
#define ESC_P 8
#define BJC600 9
#define BJC800 10
/* No. of ink jets (used to minimise head movements) */
#define HEAD_ROWS_MONO 50
#define HEAD_ROWS_COLOUR 16
/* Colour mapping procedures */
private dev_proc_map_cmyk_color (gdev_cmyk_map_cmyk_color);
private dev_proc_map_rgb_color (gdev_cmyk_map_rgb_color);
private dev_proc_map_color_rgb (gdev_cmyk_map_color_rgb);
private dev_proc_map_rgb_color (gdev_pcl_map_rgb_color);
private dev_proc_map_color_rgb (gdev_pcl_map_color_rgb);
/* Print-page, parameters and miscellaneous procedures */
private dev_proc_open_device(dj500c_open);
private dev_proc_open_device(dj550c_open);
private dev_proc_open_device(dnj650c_open);
private dev_proc_open_device(lj4dith_open);
private dev_proc_open_device(pj_open);
private dev_proc_open_device(pjxl_open);
private dev_proc_open_device(pjxl300_open);
private dev_proc_open_device(escp_open);
private dev_proc_open_device(bjc_open);
private dev_proc_print_page(declj250_print_page);
private dev_proc_print_page(dj500c_print_page);
private dev_proc_print_page(dj550c_print_page);
private dev_proc_print_page(dnj650c_print_page);
private dev_proc_print_page(lj4dith_print_page);
private dev_proc_print_page(pj_print_page);
private dev_proc_print_page(pjxl_print_page);
private dev_proc_print_page(pjxl300_print_page);
private dev_proc_print_page(escp_print_page);
private dev_proc_print_page(bjc_print_page);
private dev_proc_get_params(cdj_get_params);
private dev_proc_get_params(pjxl_get_params);
private dev_proc_get_params(bjc_get_params);
#define ep_get_params cdj_get_params
private dev_proc_put_params(cdj_put_params);
private dev_proc_put_params(pj_put_params);
private dev_proc_put_params(pjxl_put_params);
private dev_proc_put_params(bjc_put_params);
#define ep_put_params cdj_put_params
/* The device descriptors */
#define gx_prn_colour_device_common \
gx_prn_device_common; \
short cmyk; /* 0: not CMYK-capable, > 0: printing CMYK, */ \
/* < 0 : CMYK-capable, not printing CMYK */ \
uint default_depth; /* Used only for CMYK-capable printers now. */ \
uint correction
typedef struct gx_device_cdj_s gx_device_cdj;
struct gx_device_cdj_s {
gx_device_common;
gx_prn_colour_device_common;
int shingling; /* Interlaced, multi-pass printing */
int depletion; /* 'Intelligent' dot-removal */
};
typedef struct gx_device_pjxl_s gx_device_pjxl;
struct gx_device_pjxl_s {
gx_device_common;
gx_prn_colour_device_common;
int printqual; /* Mechanical print quality */
int rendertype; /* Driver or printer dithering control */
};
typedef struct gx_device_hp_s gx_device_hp;
struct gx_device_hp_s {
gx_device_common;
gx_prn_colour_device_common;
};
typedef struct gx_device_hp_s gx_device_pj;
typedef struct gx_device_bjc600_s gx_device_bjc600;
typedef struct gx_device_bjc800_s gx_device_bjc800;
typedef struct gx_device_bjc800_s gx_device_bjc;
#define bjc_params_common \
bool manualFeed; /* Use manual feed */ \
int mediaType; /* Cf. strings below */ \
bool mediaWeight_isSet; /* Say if weight is an integer or null */ \
int mediaWeight; /* Weigth of the media */ \
int printQuality; /* Cf. strings below */ \
bool ditheringType; /* Do dithering */ \
int colorComponents; /* The number of *desired* color comps */ \
int printColors /* 0: Transparent, \
1: C, 2: M, 4: Y, 7: K (Color decomp). \
if > 8, print in black ink. */
typedef struct {
bjc_params_common;
bool monochromePrint; /* Print with black only */
} bjc600_params;
typedef struct {
bjc_params_common;
} bjc_params;
typedef bjc_params bjc800_params;
#define gx_bjc_device_common \
gx_device_common; \
gx_prn_colour_device_common; \
int ptype; \
float printLimit
struct gx_device_bjc600_s {
gx_bjc_device_common;
bjc600_params bjc_p;
};
struct gx_device_bjc800_s {
gx_bjc_device_common;
bjc800_params bjc_p;
};
typedef struct {
gx_device_common;
gx_prn_colour_device_common;
} gx_device_colour_prn;
/* Use the cprn_device macro to access generic fields (like cmyk,
default_depth and correction), and specific macros for specific
devices. */
#define cprn_device ((gx_device_colour_prn*) pdev)
#define cdj ((gx_device_cdj *)pdev)
#define pjxl ((gx_device_pjxl *)pdev)
#define pj ((gx_device_pj *)pdev)
#define bjc ((gx_device_bjc*) pdev)
#define bjc600 ((gx_device_bjc600*) pdev)
#define bjc800 ((gx_device_bjc800*) pdev)
#define bjcparams (bjc->bjc_p)
#define bjc600params (bjc600->bjc_p)
#define bjc800params (bjc800->bjc_p)
#define bjcversion(p) (((gx_device_bjc*) pdev)->ptype == BJC800 ? \
BJC_BJC800_VERSION : BJC_BJC600_VERSION)
#define bjcversionstring(p) (((gx_device_bjc*) pdev)->ptype == BJC800 ? \
BJC_BJC800_VERSIONSTR : BJC_BJC600_VERSIONSTR)
#define bjcthickpaper(l) \
(bjcparams.mediaWeight_isSet && bjcparams.mediaWeight > l)
#define bjc600thickpaper() bjcthickpaper(BJC600_MEDIAWEIGHT_THICKLIMIT)
#define bjc800thickpaper() bjcthickpaper(BJC800_MEDIAWEIGHT_THICKLIMIT)
/* The basic structure for all printers. Note the presence of the cmyk, depth
and correct fields even if soem are not used by all printers. */
#define prn_colour_device_body(dtype, procs, dname, w10, h10, xdpi, ydpi, lm, bm, rm, tm, ncomp, depth, mg, mc, dg, dc, print_page, cmyk, correct)\
prn_device_body(dtype, procs, dname, w10, h10, xdpi, ydpi, lm, bm, rm, tm, ncomp, depth, mg, mc, dg, dc, print_page), cmyk, depth /* default */, correct
/* Note: the computation of color_info values here must match */
/* the computation in the cdj_set_bpp procedure below. */
#define prn_hp_colour_device(dtype, procs, dev_name, x_dpi, y_dpi, bpp, print_page, correct)\
prn_colour_device_body(dtype, procs, dev_name,\
DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS, x_dpi, y_dpi, 0, 0, 0, 0,\
(bpp == 32 ? 4 : (bpp == 1 || bpp == 8) ? 1 : 3), bpp,\
(bpp >= 8 ? 255 : 1), (bpp >= 8 ? 255 : bpp > 1 ? 1 : 0),\
(bpp >= 8 ? 5 : 2), (bpp >= 8 ? 5 : bpp > 1 ? 2 : 0),\
print_page, 0 /* cmyk */, correct)
#define prn_cmyk_colour_device(dtype, procs, dev_name, x_dpi, y_dpi, bpp, print_page, correct)\
prn_colour_device_body(dtype, procs, dev_name,\
DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS, x_dpi, y_dpi, 0, 0, 0, 0,\
((bpp == 1 || bpp == 4) ? 1 : 4), bpp,\
(bpp > 8 ? 255 : 1), (1 << (bpp >> 2)) - 1, /* max_gray, max_color */\
(bpp > 8 ? 5 : 2), (bpp > 8 ? 5 : bpp > 1 ? 2 : 0),\
print_page, 1 /* cmyk */, correct)
#define bjc_device(dtype, p, d, x, y, b, pp, c) \
prn_cmyk_colour_device(dtype, p, d, x, y, b, pp, c)
#define cdj_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page, correction, shingling, depletion)\
{ prn_hp_colour_device(gx_device_cdj, procs, dev_name, x_dpi, y_dpi, bpp, print_page, correction),\
shingling,\
depletion\
}
#define pjxl_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page, printqual, rendertype)\
{ prn_hp_colour_device(gx_device_pjxl, procs, dev_name, x_dpi, y_dpi, bpp, print_page, 0), \
printqual,\
rendertype\
}
#define pj_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page)\
{ prn_hp_colour_device(gx_device_pj, procs, dev_name, x_dpi, y_dpi, bpp, print_page, 0) }
#define bjc600_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page, t, mf, mt, mws, mw, pq, dt, cc, pc, mp) \
{ bjc_device(gx_device_bjc600, procs, dev_name, x_dpi, y_dpi, bpp, print_page, 0),\
t, 0., { mf, mt, mws, mw, pq, dt, cc, pc, mp }\
}
#define bjc800_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page, t, mf, mt, mws, mw, pq, dt, cc, pc) \
{ bjc_device(gx_device_bjc800, procs, dev_name, x_dpi, y_dpi, bpp, print_page, 0),\
t, 0., { mf, mt, mws, mw, pq, dt, cc, pc }\
}
#define hp_colour_procs(proc_colour_open, proc_get_params, proc_put_params) {\
proc_colour_open,\
gx_default_get_initial_matrix,\
gx_default_sync_output,\
gdev_prn_output_page,\
gdev_prn_close,\
gdev_pcl_map_rgb_color,\
gdev_pcl_map_color_rgb,\
NULL, /* fill_rectangle */\
NULL, /* tile_rectangle */\
NULL, /* copy_mono */\
NULL, /* copy_color */\
NULL, /* draw_line */\
gx_default_get_bits,\
proc_get_params,\
proc_put_params\
}
#define cmyk_colour_procs(proc_colour_open, proc_get_params, proc_put_params) {\
proc_colour_open,\
gx_default_get_initial_matrix,\
gx_default_sync_output,\
gdev_prn_output_page,\
gdev_prn_close,\
NULL /* map_rgb_color */,\
gdev_cmyk_map_color_rgb,\
NULL /* fill_rectangle */,\
NULL /* tile_rectangle */,\
NULL /* copy_mono */,\
NULL /* copy_color */,\
NULL /* draw_line */,\
gx_default_get_bits,\
proc_get_params,\
proc_put_params,\
gdev_cmyk_map_cmyk_color\
}
private gx_device_procs cdj500_procs =
hp_colour_procs(dj500c_open, cdj_get_params, cdj_put_params);
private gx_device_procs cdj550_procs =
hp_colour_procs(dj550c_open, cdj_get_params, cdj_put_params);
#ifdef USE_CDJ550_CMYK
private gx_device_procs cdj550cmyk_procs =
cmyk_colour_procs(dj550c_open, cdj_get_params, cdj_put_params);
#endif
private gx_device_procs dnj650c_procs =
hp_colour_procs(dnj650c_open, cdj_get_params, cdj_put_params);
private gx_device_procs lj4dith_procs =
hp_colour_procs(lj4dith_open, cdj_get_params, cdj_put_params);
private gx_device_procs pj_procs =
hp_colour_procs(pj_open, gdev_prn_get_params, pj_put_params);
private gx_device_procs pjxl_procs =
hp_colour_procs(pjxl_open, pjxl_get_params, pjxl_put_params);
private gx_device_procs pjxl300_procs =
hp_colour_procs(pjxl300_open, pjxl_get_params, pjxl_put_params);
private gx_device_procs bjc_procs =
cmyk_colour_procs(bjc_open, bjc_get_params, bjc_put_params);
private gx_device_procs escp_procs =
hp_colour_procs(escp_open, ep_get_params, ep_put_params);
gx_device_cdj far_data gs_cdjmono_device =
cdj_device(cdj500_procs, "cdjmono", 300, 300, 1,
dj500c_print_page, 4, 0, 1);
gx_device_cdj far_data gs_cdeskjet_device =
cdj_device(cdj500_procs, "cdeskjet", 300, 300, 3,
dj500c_print_page, 4, 2, 1);
gx_device_cdj far_data gs_cdjcolor_device =
cdj_device(cdj500_procs, "cdjcolor", 300, 300, 24,
dj500c_print_page, 4, 2, 1);
gx_device_cdj far_data gs_cdj500_device =
cdj_device(cdj500_procs, "cdj500", 300, 300, BITSPERPIXEL,
dj500c_print_page, 4, 2, 1);
gx_device_cdj far_data gs_cdj550_device =
cdj_device(cdj550_procs, "cdj550", 300, 300, BITSPERPIXEL,
dj550c_print_page, 0, 2, 1);
#ifdef USE_CDJ550_CMYK
gx_device_cdj far_data gs_cdj550cmyk_device = {
prn_cmyk_colour_device(cdj550cmyk_procs, "cdj550cmyk", 300, 300,
BITSPERPIXEL, dj550c_print_page, 0), 2, 1
};
#endif
gx_device_pj far_data gs_declj250_device =
pj_device(pj_procs, "declj250", 180, 180, BITSPERPIXEL,
declj250_print_page);
gx_device_cdj far_data gs_dnj650c_device =
cdj_device(dnj650c_procs, "dnj650c", 300, 300, BITSPERPIXEL,
dnj650c_print_page, 0, 2, 1);
gx_device_cdj far_data gs_lj4dith_device =
cdj_device(lj4dith_procs, "lj4dith", 600, 600, 8,
lj4dith_print_page, 4, 0, 1);
gx_device_pj far_data gs_pj_device =
pj_device(pj_procs, "pj", 180, 180, BITSPERPIXEL,
pj_print_page);
gx_device_pjxl far_data gs_pjxl_device =
pjxl_device(pjxl_procs, "pjxl", 180, 180, BITSPERPIXEL,
pjxl_print_page, 0, 0);
gx_device_pjxl far_data gs_pjxl300_device =
pjxl_device(pjxl300_procs, "pjxl300", 300, 300, BITSPERPIXEL,
pjxl300_print_page, 0, 0);
gx_device_cdj far_data gs_escp_device =
cdj_device(escp_procs, "escp", 360, 360, 8,
escp_print_page, 0, 0, 1);
gx_device_cdj far_data gs_escpc_device =
cdj_device(escp_procs, "escpc", 360, 360, 24,
escp_print_page, 0, 0, 1);
/* Args of bjc drivers are manualFeed, mediaType, printQuality, printColor,
mediaWeight_isSet, mediaWeight, (monochromePrint) */
gx_device_bjc600 far_data gs_bjc600_device =
bjc600_device(
bjc_procs,
BJC_BJC600,
BJC600_DEFAULT_RESOLUTION,
BJC600_DEFAULT_RESOLUTION,
BJC600_DEFAULT_BITSPERPIXEL,
bjc_print_page,
BJC600,
BJC600_DEFAULT_MANUALFEED,
BJC600_DEFAULT_MEDIATYPE,
BJC600_DEFAULT_SETMEDIAWEIGHT,
BJC600_DEFAULT_MEDIAWEIGHT,
BJC600_DEFAULT_PRINTQUALITY,
BJC600_DEFAULT_DITHERINGTYPE,
BJC600_DEFAULT_COLORCOMPONENTS,
BJC600_DEFAULT_PRINTCOLORS,
BJC600_DEFAULT_MONOCHROMEPRINT);
gx_device_bjc800 far_data gs_bjc800_device =
bjc800_device(
bjc_procs,
BJC_BJC800,
BJC800_DEFAULT_RESOLUTION,
BJC800_DEFAULT_RESOLUTION,
BJC800_DEFAULT_BITSPERPIXEL,
bjc_print_page,
BJC800,
BJC800_DEFAULT_MANUALFEED,
BJC800_DEFAULT_MEDIATYPE,
BJC800_DEFAULT_SETMEDIAWEIGHT,
BJC800_DEFAULT_MEDIAWEIGHT,
BJC800_DEFAULT_PRINTQUALITY,
BJC800_DEFAULT_DITHERINGTYPE,
BJC600_DEFAULT_COLORCOMPONENTS,
BJC800_DEFAULT_PRINTCOLORS);
/* Forward references */
private int gdev_pcl_mode1compress(P3(const byte *, const byte *, byte *));
private int gdev_pcl_mode9compress(P4(int, const byte *, const byte *, byte *));
private int hp_colour_open(P2(gx_device *, int));
private int hp_colour_print_page(P3(gx_device_printer *, FILE *, int));
private int near cdj_put_param_int(P6(gs_param_list *, gs_param_name, int *, int, int, int));
private uint gdev_prn_rasterwidth(P2(const gx_device_printer *, int));
private int cdj_put_param_bpp(P5(gx_device *, gs_param_list *, int, int, int));
private int cdj_set_bpp(P3(gx_device *, int, int));
private void cdj_expand_line(P5(word *, int, short, int, int));
private int bjc_fscmyk(P5(byte**, byte*[4][4], int**, int, int));
/* String parameters manipulation */
typedef struct {
const char* p_name;
int p_value;
} stringParamDescription;
private const byte* paramValueToString(P2(const stringParamDescription*, int));
private int paramStringValue(P4(const stringParamDescription*,
const byte*, int, int*));
private int put_param_string(P6(gs_param_list*, const byte*,
gs_param_string*, const stringParamDescription*, int *, int));
private int get_param_string(P7(gs_param_list*, const byte*,
gs_param_string*, const stringParamDescription*, int, int, int));
/* Open the printer and set up the margins. */
private int
dj500c_open(gx_device *pdev)
{ return hp_colour_open(pdev, DJ500C);
}
private int
dj550c_open(gx_device *pdev)
{ return hp_colour_open(pdev, DJ550C);
}
private int
dnj650c_open(gx_device *pdev)
{ return hp_colour_open(pdev, DNJ650C);
}
private int
lj4dith_open(gx_device *pdev)
{ return hp_colour_open(pdev, LJ4DITH);
}
private int
pjxl300_open(gx_device *pdev)
{ return hp_colour_open(pdev, PJXL300);
}
private int
pj_open(gx_device *pdev)
{ return hp_colour_open(pdev, PJ180);
}
private int
pjxl_open(gx_device *pdev)
{ return hp_colour_open(pdev, PJXL180);
}
private int
escp_open(gx_device *pdev)
{ return hp_colour_open(pdev, ESC_P);
}
private int
bjc_open(gx_device *pdev)
{ return hp_colour_open(pdev, bjc->ptype);
}
private int
hp_colour_open(gx_device *pdev, int ptype)
{ /* Change the margins if necessary. */
static const float dj_a4[4] = { DESKJET_MARGINS_A4 };
static const float dj_letter[4] = { DESKJET_MARGINS_LETTER };
static const float lj4_all[4] = { LJET4_MARGINS };
static const float pj_all[4] = { PAINTJET_MARGINS };
static const float dnj_all[4] = { DESIGNJET_MARGINS };
static const float ep_a4[4] = { ESC_P_MARGINS_A4 };
static const float ep_letter[4] = { ESC_P_MARGINS_LETTER };
static float bjc_a3[4] = { BJC_MARGINS_A3 }; /* Not const! */
static float bjc_letter[4] = { BJC_MARGINS_LETTER }; /* Not const! */
static float bjc_a4[4] = { BJC_MARGINS_A4 }; /* Not const! */
const float _ds *m = (float _ds*) 0;
/* Set up colour params if put_params has not already done so */
if (pdev->color_info.num_components == 0)
{ int code = cdj_set_bpp(pdev, pdev->color_info.depth,
pdev->color_info.num_components);
if ( code < 0 )
return code;
}
switch (ptype) {
case DJ500C:
case DJ550C:
m = (gdev_pcl_paper_size(pdev) == PAPER_SIZE_A4 ? dj_a4 :
dj_letter);
break;
case DNJ650C:
m = dnj_all;
break;
case LJ4DITH:
m = lj4_all;
break;
case PJ180:
case PJXL300:
case PJXL180:
m = pj_all;
break;
case ESC_P:
m = (gdev_pcl_paper_size(pdev) == PAPER_SIZE_A4 ? ep_a4 :
ep_letter);
break;
case BJC600:
case BJC800:
switch (gdev_pcl_paper_size(pdev)) {
case PAPER_SIZE_LEGAL:
case PAPER_SIZE_LETTER:
m = bjc_letter;
break;
case PAPER_SIZE_A0:
case PAPER_SIZE_A1:
case PAPER_SIZE_A3:
m = bjc_a3;
break;
default:
m = bjc_a4;
}
#ifndef USE_FIXED_MARGINS
if (ptype == BJC800) {
((float _ds*) m)[1] = BJC_HARD_LOWER_LIMIT;
}
#endif
bjc->printLimit = m[3]; /* The real hardware limit. */
#ifdef BJC_DEFAULT_CENTEREDAREA
if (m[3] < m[1]) {
((float _ds*) m)[3] = m[1]; /* Top margin = bottom one. */
} else {
((float _ds*) m)[1] = m[3]; /* Bottom margin = top one. */
}
#endif
break;
/*NOTREACHED*/
/*
* The margins must be set so that the resulting page length will be
* expressed exactly as a multiple of tenthes of inches.
*
*/
/**/ {
float _ds *bjcm = (float _ds*) m;
byte pdimen = (byte)
(pdev->height / pdev->y_pixels_per_inch * 10.
- bjcm[3] * 10. - bjcm[1] * 10. + .5) + 1;
do {
--pdimen;
bjcm[1] = pdev->height / pdev->y_pixels_per_inch
- bjcm[3] - (float) pdimen / 10.;
} while (bjcm[1] < BJC_LOWER_LIMIT);
}
break;
}
gx_device_set_margins(pdev, m, true);
return gdev_prn_open(pdev);
}
/* Added parameters for DeskJet 5xxC */
/* Get parameters. In addition to the standard and printer
* parameters, we supply shingling and depletion parameters,
* and control over the bits-per-pixel used in output rendering */
private int
cdj_get_params(gx_device *pdev, gs_param_list *plist)
{ int code = gdev_prn_get_params(pdev, plist);
if ( code < 0 ||
(code = param_write_int(plist, "BlackCorrect", (int *)&cdj->correction)) < 0 ||
(code = param_write_int(plist, "Shingling", &cdj->shingling)) < 0 ||
(code = param_write_int(plist, "Depletion", &cdj->depletion)) < 0
)
return code;
return code;
}
/* Put parameters. */
private int
cdj_put_params(gx_device *pdev, gs_param_list *plist)
{ int correction = cdj->correction;
int shingling = cdj->shingling;
int depletion = cdj->depletion;
int bpp = 0;
int code = 0;
code = cdj_put_param_int(plist, "BlackCorrect", &correction, 0, 9, code);
code = cdj_put_param_int(plist, "Shingling", &shingling, 0, 2, code);
code = cdj_put_param_int(plist, "Depletion", &depletion, 1, 3, code);
code = cdj_put_param_int(plist, "BitsPerPixel", &bpp, 1, 32, code);
if ( code < 0 )
return code;
code = cdj_put_param_bpp(pdev, plist, bpp, bpp, 0);
if ( code < 0 )
return code;
cdj->correction = correction;
cdj->shingling = shingling;
cdj->depletion = depletion;
return 0;
}
/* Added parameters for PaintJet XL and PaintJet XL300 */
/* Get parameters. In addition to the standard and printer
* parameters, we supply print_quality and render_type
* parameters, together with bpp control. */
private int
pjxl_get_params(gx_device *pdev, gs_param_list *plist)
{ int code = gdev_prn_get_params(pdev, plist);
if ( code < 0 ||
(code = param_write_int(plist, "PrintQuality", &pjxl->printqual)) < 0 ||
(code = param_write_int(plist, "RenderType", &pjxl->rendertype)) < 0
)
return code;
return code;
}
/* Put parameters. */
private int
pjxl_put_params(gx_device *pdev, gs_param_list *plist)
{ int printqual = pjxl->printqual;
int rendertype = pjxl->rendertype;
int bpp = 0, real_bpp = 0;
int code = 0;
code = cdj_put_param_int(plist, "PrintQuality", &printqual, -1, 1, code);
code = cdj_put_param_int(plist, "RenderType", &rendertype, 0, 10, code);
code = cdj_put_param_int(plist, "BitsPerPixel", &bpp, 1, 32, code);
if ( code < 0 )
return code;
real_bpp = bpp;
if ( rendertype > 0 )
{ /* If printer is doing the dithering, we must have a
* true-colour mode, ie. 16 or 24 bits per pixel */
if ( bpp > 0 && bpp < 16 )
real_bpp = 24;
}
code = cdj_put_param_bpp(pdev, plist, bpp, real_bpp, 0);
if ( code < 0 )
return code;
pjxl->printqual = printqual;
pjxl->rendertype = rendertype;
return 0;
}
/* Added parameters for PaintJet */
/* Put parameters. In addition to the standard and printer */
/* parameters, we allow control of the bits-per-pixel */
private int
pj_put_params(gx_device *pdev, gs_param_list *plist)
{ int bpp = 0;
int code = cdj_put_param_int(plist, "BitsPerPixel", &bpp, 1, 32, 0);
if ( code < 0 )
return code;
return cdj_put_param_bpp(pdev, plist, bpp, bpp, 0);
}
private stringParamDescription bjc_processColorsStrings[] = {
{ "DeviceGray", 1 },
{ "DeviceRGB", 3 },
{ "DeviceCMYK", 4 },
{ 0 }
};
private stringParamDescription bjc_mediaTypeStrings[] = {
{ "PlainPaper", BJC_MEDIA_PLAINPAPER },
{ "CoatedPaper", BJC_MEDIA_COATEDPAPER },
{ "TransparencyFilm", BJC_MEDIA_TRANSPARENCYFILM },
{ "Envelope", BJC_MEDIA_ENVELOPE },
{ "Card", BJC_MEDIA_CARD},
{ "Other", BJC_MEDIA_OTHER },
{ 0 }
};
private stringParamDescription bjc600_printQualityStrings[] = {
{ "Normal", 0 },
{ "High", 1 },
{ "Draft", 2 },
{ 0 }
};
private stringParamDescription bjc800_printQualityStrings[] = {
{ "Normal", 0 },
{ "High", 1 },
{ "Low", 3 },
{ "Draft", 4 },
{ 0 },
};
private stringParamDescription bjc_ditheringTypeStrings[] = {
{ "None", BJC_DITHER_NONE },
{ "Floyd-Steinberg", BJC_DITHER_FS },
{ 0 }
};
private int
bjc_get_params(gx_device *pdev, gs_param_list *plist)
{
int code = gdev_prn_get_params(pdev, plist);
int ncode;
gs_param_string pmedia;
gs_param_string pquality;
gs_param_string dithering;
if (code < 0) return_error(code);
if ((ncode = param_write_bool(plist, BJC_OPTION_MANUALFEED,
&bjcparams.manualFeed)) < 0) {
code = ncode;
}
code = get_param_string(plist, (unsigned char *)BJC_OPTION_MEDIATYPE, &pmedia,
bjc_mediaTypeStrings, bjcparams.mediaType, true, code);
code = get_param_string(plist, (unsigned char *)BJC_OPTION_PRINTQUALITY, &pquality,
(bjc->ptype == BJC800 ? bjc800_printQualityStrings :
bjc600_printQualityStrings), bjcparams.printQuality,
true, code);
code = get_param_string(plist, (unsigned char *)BJC_OPTION_DITHERINGTYPE, &dithering,
bjc_ditheringTypeStrings, bjcparams.ditheringType, true, code);
if ((ncode = param_write_int(plist, BJC_OPTION_PRINTCOLORS,
&bjcparams.printColors)) < 0) {
code = ncode;
}
if ((ncode = (bjcparams.mediaWeight_isSet ?
param_write_int(plist, BJC_OPTION_MEDIAWEIGHT,
&bjcparams.mediaWeight) :
param_write_null(plist, BJC_OPTION_MEDIAWEIGHT))) < 0) {
code = ncode;
}
if (bjc->ptype != BJC800) {
if ((ncode = param_write_bool(plist, BJC_OPTION_MONOCHROMEPRINT,
&bjc600params.monochromePrint)) < 0) {
code = ncode;
}
}
/**/ {
float version;
gs_param_string versionString;
bool bTrue = true;
version = bjcversion(pdev);
versionString.data = (byte *)bjcversionstring(pdev);
versionString.size = strlen((char *)versionString.data);
versionString.persistent = true;
if ((ncode = param_write_float(plist, BJC_DEVINFO_VERSION,
&version)) < 0) {
code = ncode;
}
if ((ncode = param_write_string(plist, BJC_DEVINFO_VERSIONSTRING,
&versionString)) < 0) {
code = ncode;
}
if ((ncode = param_write_bool(plist, BJC_DEVINFO_OUTPUTFACEUP,
&bTrue)) < 0) {
code = ncode;
}
}
return code;
}
/* Put properties for the bjc drivers. */
private int
bjc_put_params(gx_device *pdev, gs_param_list *plist)
{
int bpp = 0, ccomps = 0;
int code = 0;
int ncode;
bool aBool = true;
const char* oname = (const char*) 0;
bjc600_params new600Params;
bjc800_params new800Params;
bjc_params* params;
gs_param_string pprocesscolors;
gs_param_string pmedia;
gs_param_string pquality;
gs_param_float_array hwra;
if (bjc->ptype != BJC800) {
new600Params = bjc600params;
params = (bjc_params*) &new600Params;
} else {
new800Params = bjc800params;
params = (bjc_params*) &new800Params;
}
if ((code = cdj_put_param_int(plist, "BitsPerPixel",
&bpp, 1, 32, code)) != 1) {
bpp = pdev->color_info.depth;
}
if ((code = put_param_string(plist, (unsigned char *)"ProcessColorModel",
&pprocesscolors, bjc_processColorsStrings, &ccomps, code)) != 1) {
ccomps = pdev->color_info.num_components;
}
if ((ncode = param_read_bool(plist, oname = BJC_OPTION_MANUALFEED,
¶ms->manualFeed)) < 0) {
param_signal_error(plist, oname, code = ncode);
}
code = put_param_string(plist, (unsigned char *)BJC_OPTION_MEDIATYPE, &pmedia,
bjc_mediaTypeStrings, ¶ms->mediaType, code);
code = cdj_put_param_int(plist, BJC_OPTION_PRINTCOLORS,
¶ms->printColors, 0, 15, code);
code = put_param_string(plist, (unsigned char *)BJC_OPTION_PRINTQUALITY, &pquality,
(bjc->ptype == BJC800 ? bjc800_printQualityStrings :
bjc600_printQualityStrings), ¶ms->printQuality, code);
switch (ncode = param_read_int(plist,
oname = BJC_OPTION_MEDIAWEIGHT, ¶ms->mediaWeight)) {
case 0:
if (params->mediaWeight <= 0) {
ncode = gs_error_rangecheck;
} else {
params->mediaWeight_isSet = 1;
break;
}
goto mwe;
default:
if ((ncode = param_read_null(plist, oname)) == 0) {
params->mediaWeight_isSet = 0;
break;
}
mwe: param_signal_error(plist, oname, code = ncode);
case 1:
break;
}
if (bjc->ptype != BJC800) {
bjc600_params* params600 = (bjc600_params*) params;
if ((ncode = param_read_bool(plist,
oname = BJC_OPTION_MONOCHROMEPRINT,
¶ms600->monochromePrint)) < 0) {
param_signal_error(plist, oname, code = ncode);
}
}
if ((ncode = cdj_param_check_float(plist, BJC_DEVINFO_VERSION,
bjcversion(pdev), true)) < 0) {
code = ncode;
}
if ((ncode = cdj_param_check_string(plist, BJC_DEVINFO_VERSIONSTRING,
bjcversionstring(pdev), true)) < 0) {
code = ncode;
}
if ((ncode = param_read_bool(plist, oname = BJC_DEVINFO_OUTPUTFACEUP,
&aBool)) < 0) {
param_signal_error(plist, oname, code = ncode);
} else if (aBool != true) {
param_signal_error(plist, oname, code = ncode = gs_error_rangecheck);
}
/* Check for invalid resolution. The array macros are taken from
gsdparam.c and modified to use oname, ncode and code instead
of param_name, code and ecode respectively. */
BEGIN_ARRAY_PARAM(param_read_float_array, "HWResolution", hwra, 2, hwre)
if ( hwra.data[0] <= 0 || hwra.data[1] <= 0 ||
hwra.data[0] != hwra.data[1] )
ncode = gs_error_rangecheck;
else {
#ifdef BJC_STRICT
if (hwra.data[0] != BJC_RESOLUTION_LOW &&
hwra.data[0] != BJC_RESOLUTION_NORMAL &&
hwra.data[0] != BJC_RESOLUTION_HIGH) {
ncode = gs_error_rangecheck;
}
#else
/* A small hack for checking resolution without logarithms. */
/**/ {
int n;
for (n = 0; n < 8 * sizeof(n) / BJC_RESOLUTION_BASE; ++n) {
float res = BJC_RESOLUTION_BASE * (1 << n);
if (res == hwra.data[0]) break;
if (res > hwra.data[0]) {
ncode = gs_error_rangecheck;
}
}
if (n == 8 * sizeof(n)) {
ncode = gs_error_rangecheck;
}
}
#endif
if (ncode < 0) {
code = ncode;
} else {
break;
}
}
END_PARAM(hwra, hwre)
if ((ncode = cdj_put_param_bpp(pdev, plist, bpp, bpp, ccomps)) < 0) {
code = ncode;
}
if (code < 0)
return code;
if (bpp == 1) {
params->ditheringType = BJC_DITHER_NONE;
}
/* Write values that did change */
if (bjc->ptype != BJC800) {
bjc600params = new600Params;
} else {
bjc800params = new800Params;
}
return code;
}
/* ------ Internal routines ------ */
/* The DeskJet500C can compress (mode 9) */
private int
dj500c_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
return hp_colour_print_page(pdev, prn_stream, DJ500C);
}
/* The DeskJet550C can compress (mode 9) */
private int
dj550c_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
return hp_colour_print_page(pdev, prn_stream, DJ550C);
}
/* The DesignJet650C can compress (mode 1) */
private int
dnj650c_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
return hp_colour_print_page(pdev, prn_stream, DNJ650C);
}
private int
lj4dith_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
return hp_colour_print_page(pdev, prn_stream, LJ4DITH);
}
/* The PJXL300 can compress (modes 2 & 3) */
private int
pjxl300_print_page(gx_device_printer * pdev, FILE * prn_stream)
{ int ret_code;
/* Ensure we're operating in PCL mode */
fputs("\033%-12345X@PJL enter language = PCL\n", prn_stream);
ret_code = hp_colour_print_page(pdev, prn_stream, PJXL300);
/* Reenter switch-configured language */
fputs("\033%-12345X", prn_stream);
return ret_code;
}
/* The PaintJet XL can compress (modes 2 & 3) */
private int
pjxl_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
return hp_colour_print_page(pdev, prn_stream, PJXL180);
}
/* The PaintJet can compress (mode 1) */
private int
pj_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
return hp_colour_print_page(pdev, prn_stream, PJ180);
}
/* The LJ250 can compress (mode 1) */
private int
declj250_print_page(gx_device_printer * pdev, FILE * prn_stream)
{ int ret_code;
fputs("\033%8", prn_stream); /* Enter PCL emulation mode */
ret_code = hp_colour_print_page(pdev, prn_stream, DECLJ250);
fputs("\033%@", prn_stream); /* Exit PCL emulation mode */
return ret_code;
}
/* The BJC-600 cannot compress w/o raster image commands. */
private int
escp_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
return hp_colour_print_page(pdev, prn_stream, ESC_P);
}
/* The BJC-600 can compress w/ raster image commands. */
private int
bjc_print_page(gx_device_printer * pdev, FILE * prn_stream)
{
return hp_colour_print_page(pdev, prn_stream, bjc->ptype);
}
/* MACROS FOR DITHERING (we use macros for compact source and faster code) */
/* Floyd-Steinberg dithering. Often results in a dramatic improvement in
* subjective image quality, but can also produce dramatic increases in
* amount of printer data generated and actual printing time!! Mode 9 2D
* compression is still useful for fairly flat colour or blank areas but its
* compression is much less effective in areas where the dithering has
* effectively randomised the dot distribution. */
#define SHIFT ((I * 8) - 13)
#define RSHIFT ((I * 8) - 16)
#define RANDOM (((rand() << RSHIFT) % (MAXVALUE / 2)) - MAXVALUE / 4);
#define MINVALUE 0
#define MAXVALUE (255 << SHIFT)
#define THRESHOLD (128 << SHIFT)
#define C 8
#define FSdither(inP, out, errP, Err, Bit, Offset, Element)\
oldErr = Err;\
Err = (errP[Element] + ((Err * 7 + C) >> 4) + ((int)inP[Element] << SHIFT));\
if (Err > THRESHOLD) {\
out |= Bit;\
Err -= MAXVALUE;\
}\
errP[Element + Offset] += ((Err * 3 + C) >> 4);\
errP[Element] = ((Err * 5 + oldErr + C) >> 4);
/* Here we rely on compiler optimisation to remove lines of the form
* (if (1 >= 4) {...}, ie. the constant boolean expressions */
/* The original code is in the #else part. Since by default NEW_DITHER
is not defined, the old code is used. No enhancement is visible for the
bjc600 drivers with the new code, anyway :-( */
#ifdef NEW_DITHER
#define FSDline(scan, i, j, plane_size, cErr, mErr, yErr, kErr, cP, mP, yP, kP, n)\
{\
if (scan == 0) { /* going_up */\
for (i = 0; i < plane_size; i++) {\
byte c, y, m, k, bitmask;\
int oldErr;\
bitmask = 0x80;\
for (c = m = y = k = 0; bitmask != 0; bitmask >>= 1) {\
if (n >= 4) {\
FSdither(dp, k, ep, kErr, bitmask, -n, 0);\
}\
if (n >= 3) {\
FSdither(dp, c, ep, cErr, bitmask, -n, n - 3);\
FSdither(dp, m, ep, mErr, bitmask, -n, n - 2);\
}\
FSdither(dp, y, ep, yErr, bitmask, -n, n - 1);\
dp += n, ep += n;\
}\
if (n >= 4)\
*kP++ = k;\
if (n >= 3) {\
*cP++ = c;\
*mP++ = m;\
}\
*yP++ = y;\
}\
} else { /* going_down */\
for (i = 0; i < plane_size; i++) {\
byte c, y, m, k, bitmask;\
int oldErr;\
bitmask = 0x01;\
for (c = m = y = k = 0; bitmask != 0; bitmask <<= 1) {\
dp -= n, ep -= n;\
FSdither(dp, y, ep, yErr, bitmask, n, n - 1);\
if (n >= 3) {\
FSdither(dp, m, ep, mErr, bitmask, n, n - 2);\
FSdither(dp, c, ep, cErr, bitmask, n, n - 3);\
}\
if (n >= 4) {\
FSdither(dp, k, ep, kErr, bitmask, n, 0);\
}\
}\
*--yP = y;\
if (n >= 3)\
{ *--mP = m;\
*--cP = c;\
}\
if (n >= 4)\
*--kP = k;\
}\
}\
}
#else
#define FSDline(scan, i, j, plane_size, cErr, mErr, yErr, kErr, cP, mP, yP, kP, n)\
{\
if (scan == 0) { /* going_up */\
for (i = 0; i < plane_size; i++) {\
byte c, y, m, k, bitmask;\
int oldErr;\
bitmask = 0x80;\
for (c = m = y = k = 0; bitmask != 0; bitmask >>= 1) {\
if (n >= 4) {\
if (*dp) {\
FSdither(dp, k, ep, kErr, bitmask, -n, 0);\
cErr = mErr = yErr = 0;\
} else {\
FSdither(dp, c, ep, cErr, bitmask, -n, n - 3);\
FSdither(dp, m, ep, mErr, bitmask, -n, n - 2);\
FSdither(dp, y, ep, yErr, bitmask, -n, n - 1);\
}\
} else {\
if (n >= 3) {\
FSdither(dp, c, ep, cErr, bitmask, -n, n - 3);\
FSdither(dp, m, ep, mErr, bitmask, -n, n - 2);\
}\
FSdither(dp, y, ep, yErr, bitmask, -n, n - 1);\
}\
dp += n, ep += n;\
}\
if (n >= 4)\
*kP++ = k;\
if (n >= 3) {\
*cP++ = c;\
*mP++ = m;\
}\
*yP++ = y;\
}\
} else { /* going_down */\
for (i = 0; i < plane_size; i++) {\
byte c, y, m, k, bitmask;\
int oldErr;\
bitmask = 0x01;\
for (c = m = y = k = 0; bitmask != 0; bitmask <<= 1) {\
dp -= n, ep -= n;\
if (n >= 4) {\
if (*dp) {\
FSdither(dp, k, ep, kErr, bitmask, n, 0);\
cErr = mErr = yErr = 0;\
} else {\
FSdither(dp, y, ep, yErr, bitmask, n, n - 1);\
FSdither(dp, m, ep, mErr, bitmask, n, n - 2);\
FSdither(dp, c, ep, cErr, bitmask, n, n - 3);\
}\
} else {\
FSdither(dp, y, ep, yErr, bitmask, n, n - 1);\
if (n >= 3) {\
FSdither(dp, m, ep, mErr, bitmask, n, n - 2);\
FSdither(dp, c, ep, cErr, bitmask, n, n - 3);\
}\
}\
}\
*--yP = y;\
if (n >= 3)\
{ *--mP = m;\
*--cP = c;\
}\
if (n >= 4)\
*--kP = k;\
}\
}\
}
#endif
/* END MACROS FOR DITHERING */
#define CPbit(inP, out, Bit, Element)\
if (inP[Element]) {\
out |= Bit;\
}
#define COPYline(scan, i, j, plane_size, cP, mP, yP, kP, n)\
{\
if (scan == 0) { /* going_up */\
for (i = 0; i < plane_size; i++) {\
byte c, y, m, k, bitmask;\
bitmask = 0x80;\
for (c = m = y = k = 0; bitmask != 0; bitmask >>= 1) {\
if (n >= 4) {\
CPbit(dp, k, bitmask, 0);\
} \
if (n >= 3) {\
CPbit(dp, c, bitmask, n - 3);\
CPbit(dp, m, bitmask, n - 2);\
}\
CPbit(dp, y, bitmask, n - 1);\
dp += n, ep += n;\
}\
if (n >= 4)\
*kP++ = k;\
if (n >= 3) {\
*cP++ = c;\
*mP++ = m;\
}\
*yP++ = y;\
}\
} else { /* going_down */\
for (i = 0; i < plane_size; i++) {\
byte c, y, m, k, bitmask;\
bitmask = 0x01;\
for (c = m = y = k = 0; bitmask != 0; bitmask <<= 1) {\
dp -= n, ep -= n;\
if (n >= 4) {\
CPbit(dp, k, bitmask, 0);\
}\
if (n >= 3) {\
CPbit(dp, m, bitmask, n - 2);\
CPbit(dp, c, bitmask, n - 3);\
}\
CPbit(dp, y, bitmask, n - 1);\
}\
*--yP = y;\
if (n >= 3)\
{ *--mP = m;\
*--cP = c;\
}\
if (n >= 4)\
*--kP = k;\
}\
}\
}
/* Some convenient shorthand .. */
#define x_dpi (pdev->x_pixels_per_inch)
#define y_dpi (pdev->y_pixels_per_inch)
#define CONFIG_16BIT "\033*v6W\000\003\000\005\006\005"
#define CONFIG_24BIT "\033*v6W\000\003\000\010\010\010"
/* To calculate buffer size as next greater multiple of both parameter and W */
#define calc_buffsize(a, b) (((((a) + ((b) * W) - 1) / ((b) * W))) * W)
/*
* Miscellaneous functions for Canon BJC-600 printers in raster command mode.
*/
#define fputshort(n, f) fputc((n)%256,f);fputc((n)/256,f)
private int
bjc_cmd(byte cmd, int argsize, byte* arg, gx_device_printer* pdev,
FILE* stream)
{
fputs("\033(", stream);
putc(cmd, stream);
fputshort(argsize, stream);
fwrite(arg, sizeof(byte), argsize, stream);
return 0;
}
private int
bjc_raster_cmd_sub(char c, int rastsize, byte* data, FILE* stream)
{
fputs("\033(A", stream);
fputshort(rastsize + 1, stream);
putc(c, stream);
fwrite(data, sizeof(byte), rastsize, stream);
putc('\015', stream);
return 0;
}
private int
bjc_raster_cmd(int c_id, int rastsize, byte* data, gx_device_printer* pdev,
FILE* stream)
{
if (bjcparams.printColors == BJC_COLOR_ALLBLACK) {
bjc_raster_cmd_sub('K', rastsize, data, stream);
} else if (pdev->color_info.num_components == 1) {
if (bjcparams.printColors & BJC_COLOR_BLACK) {
bjc_raster_cmd_sub('K', rastsize, data, stream);
} else {
if (bjcparams.printColors & BJC_COLOR_YELLOW)
bjc_raster_cmd_sub('Y', rastsize, data, stream);
if (bjcparams.printColors & BJC_COLOR_MAGENTA)
bjc_raster_cmd_sub('M', rastsize, data, stream);
if (bjcparams.printColors & BJC_COLOR_CYAN)
bjc_raster_cmd_sub('C', rastsize, data, stream);
}
}else { /* Color decomposition */
private byte ymckCodes[] = {
BJC_COLOR_YELLOW,
BJC_COLOR_MAGENTA,
BJC_COLOR_CYAN,
BJC_COLOR_BLACK,
};
if (bjcparams.printColors & (int) ymckCodes[c_id]) {
bjc_raster_cmd_sub("YMCK"[c_id], rastsize, data, stream);
}
}
return 0;
}
private int
bjc_init_page(gx_device_printer* pdev, FILE* stream)
{
byte pagemargins[3], resolution[2], paperloading[2];
/* Compute page margins. */
pagemargins[0] = (byte) ((float) pdev->height / pdev->y_pixels_per_inch
* 10 + .5);
pagemargins[1] = (byte) 1;
pagemargins[2] = (byte) ((pdev->width / pdev->x_pixels_per_inch * 10) -
pdev->HWMargins[0] / 7.2 - pdev->HWMargins[2] / 7.2 + .5);
/* Cheat to keep margins into bounds (while waiting to have the right
margins for big papers. */
switch (bjc->ptype) {
case BJC800:
if (pagemargins[2] > 114) pagemargins[2] = 114;
break;
default:
if (pagemargins[2] > 80) pagemargins[2] = 80;
break;
}
/* Initialize resolution argument. */
resolution[0] = (byte) ((int)pdev->x_pixels_per_inch / 256);
resolution[1] = (byte) ((int)pdev->x_pixels_per_inch % 256);
/* Initialize paper loading argument. */
paperloading[0] = 0x10 + ((1 - bjcparams.manualFeed) << 2);
paperloading[1] = bjcparams.mediaType << 4;
/* Reinitialize printer in raster mode. */
fputs("\033[K", stream);
fputshort(2, stream);
fputc(0x00, stream);
fputc(0x0f, stream);
/* Set page mode on (ignore data at end of page) */
bjc_cmd('a', 1, (byte*) "\001", pdev, stream);
/* Set page margins */
bjc_cmd('g', 3, pagemargins, pdev, stream);
/* Set compression on (this is PackBits compression a la TIFF/Mac) */
bjc_cmd('b', 1, (byte*) "\001", pdev, stream);
/* Set paper loading. */
bjc_cmd('l', 2, paperloading, pdev, stream);
/* Set printing method. */
#ifndef BJC_INIT_800_AS_600
if (bjc->ptype == BJC800) {
#else
if (0) {
#endif
byte printmode[2];
printmode[0] = bjcparams.printQuality;
/* Modes not used are 3 (CN, Color Normal) and 2 (TP+ (?)) */
switch (bjcparams.printQuality) {
case BJC_QUALITY_DRAFT:
printmode[0] = 4; /* Draft */
break;
}
printmode[1] = (bjcparams.mediaType >= BJC_MEDIA_ENVELOPE ? 1 :
bjc800thickpaper());
bjc_cmd('c', 2, printmode, pdev, stream);
} else /* BJC600 */ {
byte printmeth[3];
printmeth[0] = 0x10 + ((1 - bjcparams.manualFeed) << 2);
printmeth[1] = (bjcparams.mediaType << 4) + bjcparams.printQuality;
printmeth[2] = (bjcparams.printQuality == BJC_QUALITY_HIGH ?
0x10 : 0) + (bjcparams.mediaType >= BJC_MEDIA_ENVELOPE ? 1 :
bjc600thickpaper());
bjc_cmd('c', 3, printmeth, pdev, stream);
}
/* Set raster resolution */
bjc_cmd('d', 2, resolution, pdev, stream);
return 0;
}
private int
bjc_v_skip(int n, gx_device_printer* pdev, FILE* stream)
{
if (n) {
fputs("\033(e", stream);
putc(2, stream);
putc(0, stream);
putc(n / 256, stream);
putc(n % 256, stream);
}
return 0;
}
private int
bjc_finish_page(gx_device_printer* pdev, FILE* stream)
{
bjc_cmd('a', 1, (byte*) "\000", pdev, stream);
bjc_cmd('b', 1, (byte*) "\000", pdev, stream);
fputc('\014', stream);
fputs("\033@", stream);
return 0;
}
/* 1D runlength compression for BJC-600
* this code is borrowed from gdevpcl.c:gdev_pcl_mode2compress.
*/
private int
bjc_compress(const byte *row, const byte *end_row, byte *compressed)
{
register const byte *exam = row;
register byte *cptr = compressed; /* output pointer into compressed bytes */
while ( exam < end_row ) {
/* Search ahead in the input looking for a run */
/* of at least 4 identical bytes. */
const byte *compr = exam;
const byte *end_dis;
const byte *next;
register byte test, test2;
test = *exam;
while ( exam < end_row ) {
test2 = *++exam;
if ( test == test2 )
break;
test = test2;
}
/* Find out how long the run is */
end_dis = exam - 1;
if ( exam == end_row ) { /* no run */
next = --end_row;
} else {
next = exam + 1;
while ( next < end_row && *next == test ) next++;
}
/* Now [compr..end_dis) should be encoded as dissimilar, */
/* and [end_dis..next) should be encoded as similar. */
/* Note that either of these ranges may be empty. */
for ( ; ; ) { /* Encode up to 128 dissimilar bytes */
uint count = end_dis - compr; /* uint for faster switch */
switch ( count ) { /* Use memcpy only if it's worthwhile. */
case 6: cptr[6] = compr[5];
case 5: cptr[5] = compr[4];
case 4: cptr[4] = compr[3];
case 3: cptr[3] = compr[2];
case 2: cptr[2] = compr[1];
case 1: cptr[1] = compr[0];
*cptr = count - 1;
cptr += count + 1;
case 0: /* all done */
break;
default:
if ( count > 128 ) count = 128;
*cptr++ = count - 1;
memcpy(cptr, compr, count);
cptr += count, compr += count;
continue;
}
break;
}
{ /* Encode up to 128 similar bytes. */
/* Note that count may be <0 at end of row. */
int count = next - end_dis;
if (next < end_row || test != 0)
while ( count > 0 ) {
int this = (count > 128 ? 128 : count);
*cptr++ = 257 - this;
*cptr++ = (byte)test;
count -= this;
}
exam = next;
}
}
return cptr - compressed;
}
/*
* For the ESC/P mode, resolution is fixed as 360dpi and we must transform
* image data to serialized data.
*/
private word *ep_storage;
private uint ep_storage_size_words;
private byte *ep_raster_buf[4][BJC_HEAD_ROWS], *ep_print_buf;
private int ep_num_comps, ep_plane_size, img_rows=BJC_HEAD_ROWS;
#define row_bytes (img_rows / 8)
#define row_words (row_bytes / sizeof(word))
#define min_rows (32) /* for optimization of text image printing */
private int
ep_print_image(FILE *prn_stream, char cmd, byte *data, int size)
{
static int ln_idx=0, vskip1=0, vskip2=0, real_rows;
int i;
static const char color[4] = {4,1,2,0};
switch (cmd) {
case 3: /* Black */
case 2: /* Cyan */
case 1: /* Magenta */
case 0: /* Yellow */
memcpy(ep_raster_buf[((int) cmd)][ln_idx+vskip2], data, size);
return 0;
case 'B': /* blank line skip */
if (!ln_idx) {
vskip1 += size;
} else if (size >= img_rows - (ln_idx+vskip2) || ln_idx+vskip2 >= min_rows) {
/* The 'I' cmd must precede 'B' cmd! */
vskip2 += size;
ep_print_image(prn_stream, 'F', 0, 0); /* flush and reset status */
} else {
vskip2 += size;
}
return 0;
case 'I': /* Increment index */
ln_idx += vskip2 + 1;
vskip2 = 0;
if (ln_idx < img_rows) return 0;
/* if ep_raster_buf filled up, then fall through here and flush buffer */
case 'F': /* flush print buffer */
if (!ln_idx) return 0; /* The end of the page. */
/* before print the image, perform vertical skip. */
while (vskip1 >= (255*2)) {
fputs("\033J\377", prn_stream); /* n/180in. feeding */
vskip1 -= (255*2);
}
if (vskip1 > 255) {
fputs("\033J\200", prn_stream);
vskip1 -= 256;
}
if (vskip1) {
/* n/360in. feeding */
fputs("\033|J", prn_stream); putc(0, prn_stream); putc(vskip1, prn_stream);
}
/* Optimize the number of nozzles to be used. */
if (ln_idx > 56) { /* use 64 nozzles */
real_rows = 64;
} else if (ln_idx > 48) { /* use 56 nozzles */
real_rows = 56;
} else if (ln_idx > 32) { /* use 48 nozzles */
real_rows = 48;
} else { /* use 32 nozzles */
real_rows = 32;
}
for (i = 0; i < ep_num_comps; i++) {
int lnum, hskip, print_size, img_rows;
byte *p0, *p1, *p2, *p3;
byte *inp, *inbuf, *outp, *outbuf;
img_rows = real_rows; /* Note that this img_rows is not the one that
* defined out of this function. */
outbuf = ep_print_buf;
/* Transpose raster image for serial printer image */
for (lnum=0; lnum < img_rows; lnum+=8, outbuf++) {
inbuf = inp = ep_raster_buf[i][lnum];
for (outp = outbuf; inp < inbuf+ep_plane_size; inp++, outp += img_rows) {
memflip8x8(inp, ep_plane_size, outp, row_bytes);
}
}
/* Set color */
if (ep_num_comps == 1) {
/* Don't set color (to enable user setting). */
putc('\015', prn_stream);
} else {
/* set color to one of CMYK. */
fputs("\015\033r", prn_stream);
putc(color[i], prn_stream);
}
*(outp = ep_print_buf + ep_plane_size * img_rows) = 1; /* sentinel */
p0 = p3 = ep_print_buf;
/* print image p0 to p1 and h skip p1 to p2 if p2<outp,
* then make p0=p2 and continue */
while (p0 < outp) {
static const word zeros[8] = {0,0,0,0,0,0,0,0};
if (p3 < outp) {
/* p1 is the head of running zeros. */
/* note that h skip unit is 1/180inch */
for (p1 = p3; !memcmp(p3, zeros, row_bytes*2); p3 += row_bytes*2);
/* p2 is the head of non zero image. */
p2 = p3;
redo:
for (p3 += row_bytes; memcmp(p3, zeros, row_bytes); p3 += row_bytes);
if (p3 < outp && memcmp(p3+row_bytes, zeros, row_bytes)) goto redo;
} else p1 = p2 = outp;
if (p0 < p1) { /* print the image between p0 and p1 */
print_size = ((p1 < outp) ? p1 : outp) - p0;
fputs("\033|B", prn_stream); putc(img_rows, prn_stream);
fputshort(print_size, prn_stream);
fwrite(p0, sizeof(byte), print_size, prn_stream);
}
if (p1 < p2) { /* skip running zeros from p1 to p2 */
hskip = (((p2 < outp) ? p2 : outp) - p1) / row_bytes / 2;
fputs("\033\\", prn_stream);
fputshort(hskip, prn_stream);
}
p0 = p2;
}
}
return ep_print_image(prn_stream, 'R', 0, vskip2 + ln_idx);
case 'R': /* Reset status */
ln_idx = 0;
vskip1 = size;
vskip2 = 0;
memset(ep_storage, 0, ep_storage_size_words * W);
return 0;
default: /* This should not happen */
fprintf(stderr, "ep_print_image: illegal command character `%c'.\n", cmd);
return 1;
}
/* NOT REACHED */
}
/* Send the page to the printer. Compress each scan line. */
private int
hp_colour_print_page(gx_device_printer * pdev, FILE * prn_stream, int ptype)
{
uint raster_width = gdev_prn_rasterwidth(pdev, 1);
/* int line_size = gdev_prn_rasterwidth(pdev, 0); */
int line_size = gdev_prn_raster(pdev);
int line_size_words = (line_size + W - 1) / W;
int paper_size = gdev_pcl_paper_size((gx_device *)pdev);
int num_comps = pdev->color_info.num_components;
int bits_per_pixel = pdev->color_info.depth;
int storage_bpp = bits_per_pixel;
int expanded_bpp = bits_per_pixel;
int plane_size, databuff_size;
int combined_escapes = 1;
int errbuff_size = 0;
int outbuff_size = 0;
int compression = 0;
int scan = 0;
int *errors[2];
const char *cid_string = (const char*) 0;
byte *data[4], *plane_data[4][4], *out_data;
byte *out_row, *out_row_alt;
word *storage;
uint storage_size_words;
/* Tricks and cheats ... */
switch (ptype) {
case DJ550C:
if (num_comps == 3 && !cprn_device->cmyk)
num_comps = 4; /* 4-component printing */
break;
case ESC_P:
if (bits_per_pixel == 24) /* prefer 3-component printing for bpp=24. */
num_comps = 3;
else
if (num_comps != 1)
num_comps = 4;
break;
case PJXL300:
case PJXL180:
if (pjxl->rendertype > 0) {
if (bits_per_pixel < 16)
pjxl->rendertype = 0;
else {
/* Control codes for CID sequence */
cid_string = (bits_per_pixel == 16) ? CONFIG_16BIT : CONFIG_24BIT;
/* Pretend we're a monobit device so we send the data out unchanged */
bits_per_pixel = storage_bpp = expanded_bpp = 1;
num_comps = 1;
}
}
break;
}
if (cprn_device->cmyk <= 0) {
if (storage_bpp == 8 && num_comps >= 3)
bits_per_pixel = expanded_bpp = 3; /* Only 3 bits of each byte used */
}
plane_size = calc_buffsize(line_size, storage_bpp);
ep_plane_size = plane_size;
if (bits_per_pixel == 1) { /* Data printed direct from i/p */
databuff_size = 0; /* so no data buffer required, */
outbuff_size = plane_size * 4; /* but need separate output buffers */
}
if (bits_per_pixel > 4) { /* Error buffer for FS dithering */
storage_bpp = expanded_bpp =
num_comps * 8; /* 8, 24 or 32 bits */
if (cprn_device->cmyk > 0) { /* Use CMYK dithering algorithm. */
errbuff_size = 4 * (5 + 1 + 1 + line_size + 1 + 2) * I;
} else { /* Use original (RGB) dithering. */
errbuff_size = /* 4n extra values for line ends */
calc_buffsize((plane_size * expanded_bpp + num_comps * 4) * I, 1);
}
}
databuff_size = plane_size * storage_bpp;
storage_size_words = ((plane_size + plane_size) * num_comps +
databuff_size + errbuff_size + outbuff_size) / W;
storage = (ulong *) gs_malloc(storage_size_words, W, "hp_colour_print_page");
ep_storage_size_words = (plane_size * (num_comps + 1)) / W * img_rows
+ 16; /* Redundant space for sentinel and aligning. */
ep_storage = (word *) gs_malloc(ep_storage_size_words, W, "ep_print_buffer");
/*
* The principal data pointers are stored as pairs of values, with
* the selection being made by the 'scan' variable. The function of the
* scan variable is overloaded, as it controls both the alternating
* raster scan direction used in the Floyd-Steinberg dithering and also
* the buffer alternation required for line-difference compression.
*
* Thus, the number of pointers required is as follows:
*
* errors: 2 (scan direction only)
* data: 4 (scan direction and alternating buffers)
* plane_data: 4 (scan direction and alternating buffers)
*/
if (storage == 0 || ep_storage == 0) /* can't allocate working area */
return_error(gs_error_VMerror);
else {
int i, j;
byte *p = out_data = out_row = (byte *)storage;
byte *ep_p = (byte *)ep_storage;
data[0] = data[1] = data[2] = p;
data[3] = p + databuff_size;
out_row_alt = out_row + plane_size * 2;
if (bits_per_pixel > 1) {
p += databuff_size;
}
if (bits_per_pixel > 4) {
errors[0] = (int *)p + num_comps * 2;
errors[1] = errors[0] + databuff_size;
p += errbuff_size;
}
for (i = 0; i < num_comps; i++) {
plane_data[0][i] = plane_data[2][i] = p;
p += plane_size;
}
for (i = 0; i < num_comps; i++) {
plane_data[1][i] = p;
plane_data[3][i] = p + plane_size;
p += plane_size;
}
if (bits_per_pixel == 1) {
out_data = out_row = p; /* size is outbuff_size * 4 */
out_row_alt = out_row + plane_size * 2;
data[1] += databuff_size; /* coincides with plane_data pointers */
data[3] += databuff_size;
}
for (i = 0; i < num_comps; i++) {
for (j = 0; j < img_rows; j++) {
ep_raster_buf[i][j] = ep_p;
ep_p += plane_size;
}
/* Make a sentinel and align to word size. */
ep_print_buf = (byte *)((word)(ep_p + sizeof(word)) & ~(sizeof(word)-1));
}
ep_num_comps = num_comps;
}
/* Initialize printer. */
if (ptype == BJC600 || ptype == BJC800) {
bjc_init_page(pdev, prn_stream);
} else {
if (ptype == LJ4DITH) {
fputs("\033*rB", prn_stream);
} else {
fputs("\033*rbC", prn_stream); /* End raster graphics */
}
fprintf(prn_stream, "\033*t%dR", (int)x_dpi);
/* Set resolution */
}
/* Clear temp storage */
memset(storage, 0, storage_size_words * W);
#define DOFFSET (dev_t_margin(pdev) - DESKJET_PRINT_LIMIT) /* Print position */
#define POFFSET (dev_t_margin(pdev) - PAINTJET_PRINT_LIMIT)
#define EOFFSET (dev_t_margin(pdev) - ESC_P_PRINT_LIMIT)
#define BOFFSET (dev_t_margin(pdev) - bjc->printLimit)
switch (ptype) {
case LJ4DITH:
/* Page size, orientation, top margin & perforation skip */
fprintf(prn_stream, "\033&l26A\033&l0o0e0L\033*r0F" );
fprintf(prn_stream, "\033*p0x0Y" ); /* These Offsets are hacked ! */
fprintf(prn_stream, "\033&u600D\033*r1A" );
/* Select data compression */
compression = 3;
combined_escapes = 0;
break;
case DJ500C:
case DJ550C:
/* Page size, orientation, top margin & perforation skip */
fprintf(prn_stream, "\033&l%daolE", paper_size);
/* Set depletion and shingling levels */
fprintf(prn_stream, "\033*o%dd%dQ", cdj->depletion, cdj->shingling);
/* Move to top left of printed area */
fprintf(prn_stream, "\033*p%dY", (int)(300 * DOFFSET));
/* Set number of planes ((-)1 is mono, (-)3 is (cmy)rgb, -4 is cmyk),
* and raster width, then start raster graphics */
fprintf(prn_stream, "\033*r%ds-%du0A", raster_width, num_comps);
/* Select data compression */
compression = 9;
break;
case DNJ650C:
fprintf (prn_stream, "\033%%0B"); /* Enter HPGL/2 mode */
fprintf (prn_stream, "BP5,1"); /* Turn off autorotation */
fprintf (prn_stream, "PS%d,%d",
(int)((pdev->height/pdev->y_pixels_per_inch)*1016),
(int)((pdev->width/pdev->x_pixels_per_inch)*1016)); /* Set length/width of page */
fprintf (prn_stream, "PU"); /* Pen up */
fprintf (prn_stream, "PA%d,%d", 0, 0); /* Move pen to upper-left */
fprintf (prn_stream, "\033%%1A"); /* Enter HP-RTL mode */
fprintf (prn_stream, "\033&a1N"); /* No negative motion - allow plotting
while receiving */
{ static const char temp[] = {
033, '*', 'v', '6', 'W',
000 /* color model */,
000 /* pixel encoding mode */,
003 /* number of bits per index */,
010 /* bits red */,
010 /* bits green */,
010 /* bits blue */
};
fwrite (temp, 1, sizeof(temp), prn_stream);
}
/* Set raster width */
fprintf(prn_stream, "\033*r%dS", raster_width);
/* Start raster graphics */
fprintf(prn_stream, "\033*r1A");
/* Select data compression */
compression = 1;
/* No combined escapes for raster transfers */
combined_escapes = 0;
break;
case PJXL300:
/* Page size, orientation, top margin & perforation skip */
fprintf(prn_stream, "\033&l%daolE", paper_size);
/* Set no-negative-motion mode, for faster (unbuffered) printing */
fprintf(prn_stream, "\033&a1N");
/* Set print quality */
fprintf(prn_stream, "\033*o%dQ", pjxl->printqual);
/* Move to top left of printed area */
fprintf(prn_stream, "\033*p%dY", (int)(300 * POFFSET));
/* Configure colour setup */
if (pjxl->rendertype > 0) {
/* Set render type */
fprintf(prn_stream, "\033*t%dJ", pjxl->rendertype);
/* Configure image data */
fputs(cid_string, prn_stream);
/* Set raster width, then start raster graphics */
fprintf(prn_stream, "\033*r%ds1A", raster_width);
} else {
/* Set number of planes (1 is mono, 3 is rgb),
* and raster width, then start raster graphics */
fprintf(prn_stream, "\033*r%ds-%du0A", raster_width, num_comps);
}
/* No combined escapes for raster transfers */
combined_escapes = 0;
break;
case PJXL180:
/* Page size, orientation, top margin & perforation skip */
fprintf(prn_stream, "\033&l%daolE", paper_size);
/* Set print quality */
fprintf(prn_stream, "\033*o%dQ", pjxl->printqual);
/* Move to top left of printed area */
fprintf(prn_stream, "\033*p%dY", (int)(180 * POFFSET));
/* Configure colour setup */
if (pjxl->rendertype > 0) {
/* Set render type */
fprintf(prn_stream, "\033*t%dJ", pjxl->rendertype);
/* Configure image data */
fputs(cid_string, prn_stream);
/* Set raster width, then start raster graphics */
fprintf(prn_stream, "\033*r%ds1A", raster_width);
} else {
/* Set number of planes (1 is mono, 3 is rgb),
* and raster width, then start raster graphics */
fprintf(prn_stream, "\033*r%ds%du0A", raster_width, num_comps);
}
break;
case PJ180:
case DECLJ250:
/* Disable perforation skip */
fprintf(prn_stream, "\033&lL");
/* Move to top left of printed area */
fprintf(prn_stream, "\033&a%dV", (int)(720 * POFFSET));
/* Set number of planes (1 is mono, 3 is rgb),
* and raster width, then start raster graphics */
fprintf(prn_stream, "\033*r%ds%du0A", raster_width, num_comps);
if (ptype == DECLJ250) {
/* No combined escapes for raster transfers */
combined_escapes = 0;
/* From here on, we're a standard Paintjet .. */
ptype = PJ180;
}
/* Select data compression */
compression = 1;
break;
case ESC_P:
/* Move to top left of printed area (must be modified for large movement(YK))*/
if ((int)(EOFFSET*360)) fprintf(prn_stream, "\033|J%c%c", 0, (int)(360*EOFFSET));
combined_escapes = 0;
break;
case BJC600:
case BJC800:
/* Move to top left of printed area */
bjc_v_skip((int)(pdev->HWResolution[1] * BOFFSET), pdev, prn_stream);
combined_escapes = 0;
compression = 2; /* BJC600 uses the same method as mode 2 compression */
break;
}
/* Unfortunately, the Paintjet XL300 PCL interpreter introduces a
* version of the PCL language which is different to all earlier HP
* colour and mono inkjets, in that it loses the very useful ability
* to use combined escape sequences with the raster transfer
* commands. In this respect, it is incompatible even with the older
* 180 dpi PaintJet and PaintJet XL printers! Another regrettable
* omission is that 'mode 9' compression is not supported, as this
* mode can give both computational and PCL file size advantages. */
if (combined_escapes) {
/* From now on, all escape commands start with \033*b, so we
* combine them (if the printer supports this). */
fputs("\033*b", prn_stream);
/* Set compression if the mode has been defined. */
if (compression)
fprintf(prn_stream, "%dm", compression);
}
else if (ptype == BJC600 || ptype == BJC800)
; /* Currently, nothing to do. */
else
if (compression)
fprintf(prn_stream, "\033*b%dM", compression);
/* Send each scan line in turn */
{
int cErr, mErr, yErr, kErr;
int this_pass, lnum, i;
int start_rows;
int lend, num_blank_lines = 0;
word rmask = ~(word) 0 << ((-pdev->width * storage_bpp) & (W * 8 - 1));
lend = pdev->height - (dev_t_margin(pdev) + dev_b_margin(pdev)) * y_dpi;
switch (ptype) {
case BJC600:
case BJC800:
start_rows = BJC_HEAD_ROWS;
break;
/* Inhibit blank line printing for RGB-only printers, since in
* this case 'blank' means black! Also disabled for XL300 due to
* an obscure bug in the printer's firmware */
case PJ180:
case PJXL180:
case PJXL300:
start_rows = -1;
break;
default:
start_rows = (num_comps == 1) ? HEAD_ROWS_MONO - 1 :
HEAD_ROWS_COLOUR - 1;
break;
}
cErr = mErr = yErr = kErr = 0;
if (bits_per_pixel > 4) { /* Randomly seed initial error buffer */
if (cprn_device->cmyk > 0 && expanded_bpp == 32) {
bjc_fscmyk(data, plane_data, errors, plane_size, -1);
} else {
int *ep = errors[0];
for (i = 0; i < databuff_size; i++) {
*ep++ = RANDOM;
}
}
}
this_pass = start_rows;
for (lnum = 0; lnum < lend; lnum++) {
word *data_words = (word *)data[scan];
register word *end_data = data_words + line_size_words;
gdev_prn_copy_scan_lines(pdev, lnum, data[scan], line_size);
/* Mask off 1-bits beyond the line width. */
end_data[-1] &= rmask;
/* Remove trailing 0s. */
while (end_data > data_words && end_data[-1] == 0)
end_data--;
if (ptype != DNJ650C) /* DesignJet can't skip blank lines ? ? */
if (end_data == data_words) { /* Blank line */
num_blank_lines++;
continue;
}
/* Skip blank lines if any */
if (num_blank_lines > 0) {
if (ptype == ESC_P) {
ep_print_image(prn_stream, 'B', 0, num_blank_lines);
} else if (ptype == BJC600 || ptype == BJC800) {
bjc_v_skip(num_blank_lines, pdev, prn_stream);
} else if (num_blank_lines < this_pass) {
/* Moving down from current position
* causes head motion on the DeskJets, so
* if the number of lines is within the
* current pass of the print head, we're
* better off printing blanks. */
this_pass -= num_blank_lines;
if (combined_escapes) {
fputc('y', prn_stream); /* Clear current and seed rows */
for (; num_blank_lines; num_blank_lines--)
fputc('w', prn_stream);
} else {
#if 0
/**************** The following code has been proposed ****************/
/**************** as a replacement: ****************/
fputs("\033*b1Y", prn_stream); /* Clear current and seed rows */
if ( num_blank_lines > 1 )
fprintf(prn_stream, "\033*b%dY", num_blank_lines - 1);
num_blank_lines = 0;
#else
fputs("\033*bY", prn_stream); /* Clear current and seed rows */
if (ptype == DNJ650C) {
fprintf (prn_stream, "\033*b%dY", num_blank_lines);
num_blank_lines = 0;
}
else {
for (; num_blank_lines; num_blank_lines--)
fputs("\033*bW", prn_stream);
}
#endif
}
} else {
if (combined_escapes)
fprintf(prn_stream, "%dy", num_blank_lines);
else
fprintf(prn_stream, "\033*b%dY", num_blank_lines);
}
memset(plane_data[1 - scan][0], 0, plane_size * num_comps);
num_blank_lines = 0;
this_pass = start_rows;
}
{ /* Printing non-blank lines */
register byte *kP = plane_data[scan + 2][3];
register byte *cP = plane_data[scan + 2][2];
register byte *mP = plane_data[scan + 2][1];
register byte *yP = plane_data[scan + 2][0];
register byte *dp = data[scan + 2];
register int *ep = errors[scan];
int zero_row_count;
int i, j;
byte *odp;
if (this_pass)
this_pass--;
else
this_pass = start_rows;
if (expanded_bpp > bits_per_pixel) { /* Expand line if required */
cdj_expand_line(data_words, line_size,
cprn_device->cmyk,
bits_per_pixel, expanded_bpp);
}
/* In colour modes, we have some bit-shuffling to do before
* we can print the data; in FS mode we also have the
* dithering to take care of. */
switch (expanded_bpp) { /* Can be 1, 3, 8, 24 or 32 */
case 3:
/* Transpose the data to get pixel planes. */
for (i = 0, odp = plane_data[scan][0]; i < databuff_size;
i += 8, odp++) { /* The following is for 16-bit
* machines */
#define spread3(c)\
{ 0, c, c*0x100, c*0x101, c*0x10000L, c*0x10001L, c*0x10100L, c*0x10101L }
static ulong spr40[8] = spread3(0x40);
static ulong spr08[8] = spread3(8);
static ulong spr02[8] = spread3(2);
register byte *dp = data[scan] + i;
register ulong pword =
(spr40[dp[0]] << 1) +
(spr40[dp[1]]) +
(spr40[dp[2]] >> 1) +
(spr08[dp[3]] << 1) +
(spr08[dp[4]]) +
(spr08[dp[5]] >> 1) +
(spr02[dp[6]]) +
(spr02[dp[7]] >> 1);
odp[0] = (byte) (pword >> 16);
odp[plane_size] = (byte) (pword >> 8);
odp[plane_size * 2] = (byte) (pword);
}
break;
case 8:
switch (ptype) {
case BJC600:
case BJC800:
if (bjcparams.ditheringType == BJC_DITHER_NONE) {
COPYline(scan, i, j, plane_size, cP, mP, yP, kP, 1);
break;
}
default:
FSDline(scan, i, j, plane_size, cErr, mErr, yErr, kErr,
cP, mP, yP, kP, 1);
}
break;
case 24:
FSDline(scan, i, j, plane_size, cErr, mErr, yErr, kErr,
cP, mP, yP, kP, 3);
break;
case 32:
if (cprn_device->cmyk > 0) {
bjc_fscmyk(data, plane_data, errors, plane_size, scan);
} else {
FSDline(scan, i, j, plane_size, cErr, mErr, yErr, kErr,
cP, mP, yP, kP, 4);
}
break;
} /* switch(expanded_bpp) */
/* Make sure all black is in the k plane */
if (num_comps == 4 && (cprn_device->cmyk <= 0 || expanded_bpp != 32)) {
register word *kp = (word *)plane_data[scan][3];
register word *cp = (word *)plane_data[scan][2];
register word *mp = (word *)plane_data[scan][1];
register word *yp = (word *)plane_data[scan][0];
if (bits_per_pixel > 4) { /* Done as 4 planes */
for (i = 0; i < plane_size / W; i++) {
word bits = *cp & *mp & *yp;
*kp++ |= bits;
bits = ~bits;
*cp++ &= bits;
*mp++ &= bits;
*yp++ &= bits;
}
} else { /* This has really been done as 3 planes */
for (i = 0; i < plane_size / W; i++) {
word bits = *cp & *mp & *yp;
*kp++ = bits;
bits = ~bits;
*cp++ &= bits;
*mp++ &= bits;
*yp++ &= bits;
}
}
}
/* Transfer raster graphics in the order (K), C, M, Y */
for (zero_row_count = 0, i = num_comps - 1; i >= 0; i--) {
int output_plane = 1;
int out_count = 0;
switch (ptype) {
case DJ500C: /* Always compress using mode 9 */
case DJ550C:
out_count = gdev_pcl_mode9compress(plane_size,
plane_data[scan][i],
plane_data[1 - scan][i],
out_data);
/* This optimisation allows early termination of the
* row, but this doesn't work correctly in an alternating
* mode 2 / mode 3 regime, so we only use it with mode 9
* compression */
if (out_count == 0)
{ output_plane = 0; /* No further output for this plane */
if (i == 0)
fputc('w', prn_stream);
else
zero_row_count++;
}
else
{ for (; zero_row_count; zero_row_count--)
fputc('v', prn_stream);
}
break;
case PJ180:
case DNJ650C:
if (num_comps > 1)
{ word *wp = (word *)plane_data[scan][i];
for (j = 0; j < plane_size / W; j++, wp++)
*wp = ~*wp;
}
out_count = gdev_pcl_mode1compress((const byte *)
plane_data[scan][i],
(const byte *)
plane_data[scan][i] + plane_size - 1,
out_data);
break;
case PJXL180: /* Need to invert data as CMY not supported */
if (num_comps > 1)
{ word *wp = (word *)plane_data[scan][i];
for (j = 0; j < plane_size / W; j++, wp++)
*wp = ~*wp;
}
/* fall through .. */
case PJXL300: /* Compression modes 2 and 3 are both
* available. Try both and see which one
* produces the least output data. */
case LJ4DITH:
{ const byte *plane = plane_data[scan][i];
byte *prev_plane = plane_data[1 - scan][i];
const word *row = (word *)plane;
const word *end_row = row + plane_size/W;
int count2 = gdev_pcl_mode2compress(row, end_row, out_row_alt);
int count3 = gdev_pcl_mode3compress(plane_size, plane, prev_plane, out_row);
int penalty = combined_escapes ? strlen("#m") : strlen("\033*b#M");
int penalty2 = (compression == 2 ? 0 : penalty);
int penalty3 = (compression == 3 ? 0 : penalty);
if (count3 + penalty3 < count2 + penalty2)
{ if ( compression != 3 ) {
if (combined_escapes)
fputs("3m", prn_stream);
else
fputs("\033*b3M", prn_stream);
compression = 3;
}
out_data = out_row;
out_count = count3;
}
else
{ if ( compression != 2 ) {
if (combined_escapes)
fputs("2m", prn_stream);
else
fputs("\033*b2M", prn_stream);
compression = 2;
}
out_data = out_row_alt;
out_count = count2;
}
}
break;
case BJC600:
case BJC800:
{ const byte *plane = (byte *)plane_data[scan][i];
int count2 = bjc_compress(plane, plane + plane_size, out_row_alt);
out_data = out_row_alt;
out_count = count2;
}
break;
}
if (output_plane) {
if (combined_escapes)
fprintf(prn_stream, "%d%c", out_count, "wvvv"[i]);
else if (ptype == BJC600 || ptype == BJC800) {
if (out_count)
bjc_raster_cmd(num_comps == 1 ? 3 : i,
out_count, out_data, pdev, prn_stream);
if (i == 0) bjc_v_skip(1, pdev, prn_stream);
} else if (ptype == ESC_P)
ep_print_image(prn_stream, i, plane_data[scan][i], plane_size);
else
fprintf(prn_stream, "\033*b%d%c", out_count, "WVVV"[i]);
if (ptype < ESC_P)
fwrite(out_data, sizeof(byte), out_count, prn_stream);
}
} /* Transfer Raster Graphics ... */
if (ptype == ESC_P)
ep_print_image(prn_stream, 'I', 0, 0); /* increment line index */
scan = 1 - scan; /* toggle scan direction */
} /* Printing non-blank lines */
} /* for lnum ... */
} /* send each scan line in turn */
if (combined_escapes)
fputs("0M", prn_stream);
/* end raster graphics */
if (ptype == BJC600 || ptype == BJC800) {
bjc_finish_page(pdev, prn_stream);
}
else if (ptype != ESC_P)
fputs("\033*rbC\033E", prn_stream);
/* eject page */
if (ptype == PJ180)
fputc('\f', prn_stream);
else if (ptype == DNJ650C)
fputs ("\033*rC\033%%0BPG;", prn_stream);
else if (ptype == BJC600 || ptype == BJC800)
; /* Already done */
else if (ptype == ESC_P) {
ep_print_image(prn_stream, 'F', 0, 0); /* flush print buffer */
fputs("\014\033@", prn_stream); /* reset after eject page */
} else
fputs("\033&l0H", prn_stream);
/* free temporary storage */
gs_free((char *) ep_storage, ep_storage_size_words, W, "ep_print_buffer");
gs_free((char *) storage, storage_size_words, W, "hp_colour_print_page");
return 0;
}
/*
* Mode 9 2D compression for the HP DeskJet 5xxC. This mode can give
* very good compression ratios, especially if there are areas of flat
* colour (or blank areas), and so is 'highly recommended' for colour
* printing in particular because of the very large amounts of data which
* can be generated
*/
private int
gdev_pcl_mode9compress(int bytecount, const byte * current, const byte * previous, byte * compressed)
{
register const byte *cur = current;
register const byte *prev = previous;
register byte *out = compressed;
const byte *end = current + bytecount;
while (cur < end) { /* Detect a run of unchanged bytes. */
const byte *run = cur;
register const byte *diff;
int offset;
while (cur < end && *cur == *prev) {
cur++, prev++;
}
if (cur == end)
break; /* rest of row is unchanged */
/* Detect a run of changed bytes. */
/* We know that *cur != *prev. */
diff = cur;
do {
prev++;
cur++;
}
while (cur < end && *cur != *prev);
/* Now [run..diff) are unchanged, and */
/* [diff..cur) are changed. */
offset = diff - run;
{
const byte *stop_test = cur - 4;
int dissimilar, similar;
while (diff < cur) {
const byte *compr = diff;
const byte *next; /* end of run */
byte value = 0;
while (diff <= stop_test &&
((value = *diff) != diff[1] ||
value != diff[2] ||
value != diff[3]))
diff++;
/* Find out how long the run is */
if (diff > stop_test) /* no run */
next = diff = cur;
else {
next = diff + 4;
while (next < cur && *next == value)
next++;
}
#define MAXOFFSETU 15
#define MAXCOUNTU 7
/* output 'dissimilar' bytes, uncompressed */
if ((dissimilar = diff - compr)) {
int temp, i;
if ((temp = --dissimilar) > MAXCOUNTU)
temp = MAXCOUNTU;
if (offset < MAXOFFSETU)
*out++ = (offset << 3) | (byte) temp;
else {
*out++ = (MAXOFFSETU << 3) | (byte) temp;
offset -= MAXOFFSETU;
while (offset >= 255) {
*out++ = 255;
offset -= 255;
}
*out++ = offset;
}
if (temp == MAXCOUNTU) {
temp = dissimilar - MAXCOUNTU;
while (temp >= 255) {
*out++ = 255;
temp -= 255;
}
*out++ = (byte) temp;
}
for (i = 0; i <= dissimilar; i++)
*out++ = *compr++;
offset = 0;
} /* end uncompressed */
#define MAXOFFSETC 3
#define MAXCOUNTC 31
/* output 'similar' bytes, run-length encoded */
if ((similar = next - diff)) {
int temp;
if ((temp = (similar -= 2)) > MAXCOUNTC)
temp = MAXCOUNTC;
if (offset < MAXOFFSETC)
*out++ = 0x80 | (offset << 5) | (byte) temp;
else {
*out++ = 0x80 | (MAXOFFSETC << 5) | (byte) temp;
offset -= MAXOFFSETC;
while (offset >= 255) {
*out++ = 255;
offset -= 255;
}
*out++ = offset;
}
if (temp == MAXCOUNTC) {
temp = similar - MAXCOUNTC;
while (temp >= 255) {
*out++ = 255;
temp -= 255;
}
*out++ = (byte) temp;
}
*out++ = value;
offset = 0;
} /* end compressed */
diff = next;
}
}
}
return out - compressed;
}
/*
* Row compression for the H-P PaintJet.
* Compresses data from row up to end_row, storing the result
* starting at compressed. Returns the number of bytes stored.
* The compressed format consists of a byte N followed by a
* data byte that is to be repeated N+1 times.
* In the worst case, the `compressed' representation is
* twice as large as the input.
* We complement the bytes at the same time, because
* we accumulated the image in complemented form.
*/
private int
gdev_pcl_mode1compress(const byte *row, const byte *end_row, byte *compressed)
{ register const byte *in = row;
register byte *out = compressed;
while ( in < end_row )
{ byte test = *in++;
const byte *run = in;
while ( in < end_row && *in == test ) in++;
/* Note that in - run + 1 is the repetition count. */
while ( in - run > 255 )
{ *out++ = 255;
*out++ = test;
run += 256;
}
*out++ = in - run;
*out++ = test;
}
return out - compressed;
}
/*
* Map a CMYK color to a color index. We just use depth / 4 bits per color
* to produce the color index.
*
* Important note: CMYK values are stored in the order K, C, M, Y because of
* the way the HP drivers work.
*
*/
#define gx_color_value_to_bits(cv, b) \
((cv) >> (gx_color_value_bits - (b)))
#define gx_bits_to_color_value(cv, b) \
((cv) << (gx_color_value_bits - (b)))
#define gx_cmyk_value_bits(c, m, y, k, b) \
((gx_color_value_to_bits((k), (b)) << (3 * (b))) | \
(gx_color_value_to_bits((c), (b)) << (2 * (b))) | \
(gx_color_value_to_bits((m), (b)) << (b)) | \
(gx_color_value_to_bits((y), (b))))
#define gx_value_cmyk_bits(v, c, m, y, k, b) \
(k) = gx_bits_to_color_value(((v) >> (3 * (b))) & ((1 << (b)) - 1), (b)), \
(c) = gx_bits_to_color_value(((v) >> (2 * (b))) & ((1 << (b)) - 1), (b)), \
(m) = gx_bits_to_color_value(((v) >> (b)) & ((1 << (b)) - 1), (b)), \
(y) = gx_bits_to_color_value((v) & ((1 << (b)) - 1), (b))
private gx_color_index
gdev_cmyk_map_cmyk_color(gx_device* pdev,
gx_color_value cyan, gx_color_value magenta, gx_color_value yellow,
gx_color_value black) {
gx_color_index color;
switch (pdev->color_info.depth) {
case 1:
color = (cyan | magenta | yellow | black) > gx_max_color_value / 2 ?
(gx_color_index) 1 : (gx_color_index) 0;
break;
default: {
int nbits = pdev->color_info.depth;
if (cyan == magenta && magenta == yellow) {
/* Convert CMYK to gray -- Red Book 6.2.2 */
float bpart = ((float) cyan) * (lum_red_weight / 100.) +
((float) magenta) * (lum_green_weight / 100.) +
((float) yellow) * (lum_blue_weight / 100.) +
(float) black;
cyan = magenta = yellow = (gx_color_index) 0;
black = (gx_color_index) (bpart > gx_max_color_value ?
gx_max_color_value : bpart);
}
color = gx_cmyk_value_bits(cyan, magenta, yellow, black,
nbits >> 2);
}
}
return color;
}
/* Mapping of RGB colors to gray values. */
private gx_color_index
gdev_cmyk_map_rgb_color(gx_device *pdev, gx_color_value r, gx_color_value g, gx_color_value b)
{
if (gx_color_value_to_byte(r & g & b) == 0xff) {
return (gx_color_index) 0; /* White */
} else {
gx_color_value c = gx_max_color_value - r;
gx_color_value m = gx_max_color_value - g;
gx_color_value y = gx_max_color_value - b;
switch (pdev->color_info.depth) {
case 1:
return (c | m | y) > gx_max_color_value / 2 ?
(gx_color_index) 1 : (gx_color_index) 0;
/*NOTREACHED*/
break;
case 8:
return ((ulong) c * lum_red_weight * 10
+ (ulong) m * lum_green_weight * 10
+ (ulong) y * lum_blue_weight * 10)
>> (gx_color_value_bits + 2);
/*NOTREACHED*/
break;
}
}
return (gx_color_index) 0; /* This should never happen. */
}
/* Mapping of CMYK colors. */
private int
gdev_cmyk_map_color_rgb(gx_device *pdev, gx_color_index color, gx_color_value prgb[3])
{
switch (pdev->color_info.depth) {
case 1:
prgb[0] = prgb[1] = prgb[2] = gx_max_color_value * (1 - color);
break;
case 8:
if (pdev->color_info.num_components == 1) {
gx_color_value value = (gx_color_value) color ^ 0xff;
prgb[0] = prgb[1] = prgb[2] = (value << 8) + value;
break;
}
default: {
unsigned long bcyan, bmagenta, byellow, black;
int nbits = pdev->color_info.depth;
gx_value_cmyk_bits(color, bcyan, bmagenta, byellow, black,
nbits >> 2);
#ifdef USE_ADOBE_CMYK_RGB
/* R = 1.0 - min(1.0, C + K), etc. */
bcyan += black, bmagenta += black, byellow += black;
prgb[0] = (bcyan > gx_max_color_value ? (gx_color_value) 0 :
gx_max_color_value - bcyan);
prgb[1] = (bmagenta > gx_max_color_value ? (gx_color_value) 0 :
gx_max_color_value - bmagenta);
prgb[2] = (byellow > gx_max_color_value ? (gx_color_value) 0 :
gx_max_color_value - byellow);
#else
/* R = (1.0 - C) * (1.0 - K), etc. */
prgb[0] = (gx_color_value)
((ulong)(gx_max_color_value - bcyan) *
(gx_max_color_value - black) / gx_max_color_value);
prgb[1] = (gx_color_value)
((ulong)(gx_max_color_value - bmagenta) *
(gx_max_color_value - black) / gx_max_color_value);
prgb[2] = (gx_color_value)
((ulong)(gx_max_color_value - byellow) *
(gx_max_color_value - black) / gx_max_color_value);
#endif
}
}
return 0;
}
/*
* Map a r-g-b color to a color index.
* We complement the colours, since we're using cmy anyway, and
* because the buffering routines expect white to be zero.
* Includes colour balancing, following HP recommendations, to try
* and correct the greenish cast resulting from an equal mix of the
* c, m, y, inks by reducing the cyan component to give a truer black.
*/
/* Simple black generation/under-color removal with BG(k) = UG(k) = k. YA. */
#define bg_and_ucr(c, c_v, m, m_v, y, y_v, k) \
do { \
register byte cv = c_v, mv = m_v, yv = y_v, kv; \
\
kv = (cv > mv ? mv : cv); \
kv = (yv > k ? k : y); \
y = yv - kv; m = mv - kv; c = cv -kv; k = kv; \
} while (0)
private gx_color_index
gdev_pcl_map_rgb_color(gx_device *pdev, gx_color_value r,
gx_color_value g, gx_color_value b)
{
if (gx_color_value_to_byte(r & g & b) == 0xff)
return (gx_color_index)0; /* white */
else {
int correction = cprn_device->correction;
gx_color_value c = gx_max_color_value - r;
gx_color_value m = gx_max_color_value - g;
gx_color_value y = gx_max_color_value - b;
/* Colour correction for better blacks when using the colour ink
* cartridge (on the DeskJet 500C only). We reduce the cyan component
* by some fraction (eg. 4/5) to correct the slightly greenish cast
* resulting from an equal mix of the three inks */
if (correction) {
ulong maxval, minval, range;
maxval = c >= m ? (c >= y ? c : y) : (m >= y ? m : y);
if (maxval > 0) {
minval = c <= m ? (c <= y ? c : y) : (m <= y? m : y);
range = maxval - minval;
#define shift (gx_color_value_bits - 12)
c = ((c >> shift) * (range + (maxval * correction))) /
((maxval * (correction + 1)) >> shift);
}
}
switch (pdev->color_info.depth) {
case 1:
return ((c | m | y) > gx_max_color_value / 2 ?
(gx_color_index)1 : (gx_color_index)0);
case 8:
if (pdev->color_info.num_components >= 3)
#define gx_color_value_to_1bit(cv) ((cv) >> (gx_color_value_bits - 1))
return (gx_color_value_to_1bit(c) +
(gx_color_value_to_1bit(m) << 1) +
(gx_color_value_to_1bit(y) << 2));
else
#define red_weight 306
#define green_weight 601
#define blue_weight 117
return ((((ulong)c * red_weight +
(ulong)m * green_weight +
(ulong)y * blue_weight)
>> (gx_color_value_bits + 2)));
case 16:
#define gx_color_value_to_5bits(cv) ((cv) >> (gx_color_value_bits - 5))
#define gx_color_value_to_6bits(cv) ((cv) >> (gx_color_value_bits - 6))
return (gx_color_value_to_5bits(y) +
(gx_color_value_to_6bits(m) << 5) +
(gx_color_value_to_5bits(c) << 11));
case 24:
return (gx_color_value_to_byte(y) +
(gx_color_value_to_byte(m) << 8) +
((ulong)gx_color_value_to_byte(c) << 16));
case 32:
{ return ((c == m && c == y) ? ((ulong)gx_color_value_to_byte(c) << 24)
: (gx_color_value_to_byte(y) +
(gx_color_value_to_byte(m) << 8) +
((ulong)gx_color_value_to_byte(c) << 16)));
}
}
}
return (gx_color_index)0; /* This never happens */
}
/* Map a color index to a r-g-b color. */
private int
gdev_pcl_map_color_rgb(gx_device *pdev, gx_color_index color,
gx_color_value prgb[3])
{
/* For the moment, we simply ignore any black correction */
switch (pdev->color_info.depth) {
case 1:
prgb[0] = prgb[1] = prgb[2] = -((gx_color_value)color ^ 1);
break;
case 8:
if (pdev->color_info.num_components >= 3)
{ gx_color_value c = (gx_color_value)color ^ 7;
prgb[0] = -(c & 1);
prgb[1] = -((c >> 1) & 1);
prgb[2] = -(c >> 2);
}
else
{ gx_color_value value = (gx_color_value)color ^ 0xff;
prgb[0] = prgb[1] = prgb[2] = (value << 8) + value;
}
break;
case 16:
{ gx_color_value c = (gx_color_value)color ^ 0xffff;
ushort value = c >> 11;
prgb[0] = ((value << 11) + (value << 6) + (value << 1) +
(value >> 4)) >> (16 - gx_color_value_bits);
value = (c >> 6) & 0x3f;
prgb[1] = ((value << 10) + (value << 4) + (value >> 2))
>> (16 - gx_color_value_bits);
value = c & 0x1f;
prgb[2] = ((value << 11) + (value << 6) + (value << 1) +
(value >> 4)) >> (16 - gx_color_value_bits);
}
break;
case 24:
{ gx_color_value c = (gx_color_value)color ^ 0xffffff;
prgb[0] = gx_color_value_from_byte(c >> 16);
prgb[1] = gx_color_value_from_byte((c >> 8) & 0xff);
prgb[2] = gx_color_value_from_byte(c & 0xff);
}
break;
case 32:
#define gx_maxcol gx_color_value_from_byte(gx_color_value_to_byte(gx_max_color_value))
{ gx_color_value w = gx_maxcol - gx_color_value_from_byte(color >> 24);
prgb[0] = w - gx_color_value_from_byte((color >> 16) & 0xff);
prgb[1] = w - gx_color_value_from_byte((color >> 8) & 0xff);
prgb[2] = w - gx_color_value_from_byte(color & 0xff);
}
break;
}
return 0;
}
/*
* Convert and expand scanlines:
*
* For devices with 3 components:
*
* (a) 16 -> 24 bit (1-stage)
* (b) 16 -> 32 bit (2-stage)
* or (c) 24 -> 32 bit (1-stage)
*
* For devices with 4 components:
*
* (a) 16 -> 32 bit (1-stage)
* (b) 8 -> 32 bit (2-stage)
* or (c) 24 -> 32 bit (1-stage)
*
*/
private void
cdj_expand_line(word *line, int linesize, short cmyk, int bpp, int ebpp)
{
int endline = linesize;
byte *start = (byte *)line;
register byte *in, *out;
if (cmyk > 0) {
if (bpp == 8) {
in = start + endline;
out = start + (endline *= 2);
while (in > start) {
register byte b0;
register byte bs0, bs1, bs2, bs3;
b0 = *--in;
bs0 = b0 & 0x03;
bs1 = (b0 >> 2) & 0x03;
bs2 = (b0 >> 4) & 0x03;
bs3 = (b0 >> 6) & 0x03;
*--out = (bs0 << 2) + bs0 + (bs1 << 6) + (bs1 << 4);
*--out = (bs2 << 2) + bs2 + (bs3 << 6) + (bs3 << 4);
}
}
if (bpp == 24) {
endline = (endline + 2) / 3;
in = start + endline * 3;
out = start + endline * 4;
while (in > start) {
register byte b0, b1, b2;
b0 = *--in;
b1 = *--in;
b2 = *--in;
*--out = (b0 << 2) + ((b0 >> 4) & 0x03);
*--out = ((b1 & 0x0f) << 4) + ((b0 >> 6) << 2)
+ ((b1 >> 2) & 0x03);
*--out = ((b2 & 0x03) << 6) + ((b1 >> 4) << 2) + (b2 & 0x03);
*--out = (b2 & 0xfc) + ((b2 >> 6) & 0x03);
}
} else if (ebpp == 32) {
endline = (endline + 1) / 2;
in = start + endline * 2;
out = start + (endline *= 4);
while (in > start) {
register byte b0, b1;
b0 = *--in;
b1 = *--in;
*--out = (b0 << 4) + ((b0 >> 4) & 0x07);
*--out = (b0 & 0xf0) + ((b0 >> 4) & 0xf);
*--out = (b1 << 4) + ((b1 >> 4) & 0x0f);
*--out = (b1 & 0xf0) + ((b1 >> 4) & 0xf);
}
}
} else /* cmyk > 0 */ {
if (bpp == 16) /* 16 to 24 (cmy) if required */
{ register byte b0, b1;
endline = ((endline + 1) / 2);
in = start + endline * 2;
out = start + (endline *= 3);
while (in > start)
{ b0 = *--in;
b1 = *--in;
*--out = (b0 << 3) + ((b0 >> 2) & 0x7);
*--out = (b1 << 5) + ((b0 >> 3) & 0x1c) + ((b1 >> 1) & 0x3);
*--out = (b1 & 0xf8) + (b1 >> 5);
}
}
if (ebpp == 32) /* 24/32 (cmy) to 32 (cmyk) if required */
{ register byte c, m, y;
endline = ((endline + 2) / 3);
in = start + endline * 3;
out = start + endline * 4;
while (in > start)
{
y = *--in;
m = *--in;
c = *--in;
if (c == y && c == m) {
*--out = 0, *--out = 0, *--out = 0;
*--out = c;
} else {
*--out = y, *--out = m, *--out = c;
*--out = 0;
}
}
}
}
}
private int near
cdj_put_param_int(gs_param_list *plist, gs_param_name pname, int *pvalue,
int minval, int maxval, int ecode)
{ int code, value;
switch ( code = param_read_int(plist, pname, &value) )
{
default:
return code;
case 1:
return ecode;
case 0:
if ( value < minval || value > maxval )
param_signal_error(plist, pname, gs_error_rangecheck);
*pvalue = value;
return (ecode < 0 ? ecode : 1);
}
}
private int
cdj_set_bpp(gx_device *pdev, int bpp, int ccomps)
{ gx_device_color_info *ci = &pdev->color_info;
if (ccomps && bpp == 0) {
if (cprn_device->cmyk) {
switch (ccomps) {
default:
return gs_error_rangecheck;
/*NOTREACHED*/
break;
case 1:
bpp = 1;
break;
case 3:
bpp = 24;
break;
case 4:
switch (ci->depth) {
case 8:
case 16:
case 24:
case 32:
break;
default:
bpp = cprn_device->default_depth;
break;
}
break;
}
}
}
if (bpp == 0) {
bpp = ci->depth; /* Use the current setting. */
}
if (cprn_device->cmyk < 0) {
/* Reset procedures because we may have been in another mode. */
dev_proc(pdev, map_cmyk_color) = gdev_cmyk_map_cmyk_color;
dev_proc(pdev, map_rgb_color) = NULL;
dev_proc(pdev, map_color_rgb) = gdev_cmyk_map_color_rgb;
if (pdev->is_open) gs_closedevice(pdev);
}
/* Check for valid bpp values */
switch ( bpp )
{
case 16:
case 32:
if (cprn_device->cmyk && ccomps && ccomps != 4) goto bppe;
break;
case 24:
if (!cprn_device->cmyk || ccomps == 0 || ccomps == 4) {
break;
} else if (ccomps == 1) {
goto bppe;
} else {
/* 3 components 24 bpp printing for CMYK device. */
cprn_device->cmyk = -1;
}
break;
case 8:
if (cprn_device->cmyk) {
if (ccomps) {
if (ccomps == 3) {
cprn_device->cmyk = -1;
bpp = 3;
} else if (ccomps != 1 && ccomps != 4) {
goto bppe;
}
}
if (ccomps != 1) break;
} else {
break;
}
case 1:
if (ccomps != 1) goto bppe;
if (cprn_device->cmyk && bpp != pdev->color_info.depth) {
dev_proc(pdev, map_cmyk_color) = NULL;
dev_proc(pdev, map_rgb_color) = gdev_cmyk_map_rgb_color;
if (pdev->is_open) {
gs_closedevice(pdev);
}
}
break;
case 3:
if (!cprn_device->cmyk) {
break;
}
default:
bppe: return gs_error_rangecheck;
}
if (cprn_device->cmyk == -1) {
dev_proc(pdev, map_cmyk_color) = NULL;
dev_proc(pdev, map_rgb_color) = gdev_pcl_map_rgb_color;
dev_proc(pdev, map_color_rgb) = gdev_pcl_map_color_rgb;
if (pdev->is_open) {
gs_closedevice(pdev);
}
}
switch (ccomps) {
case 0:
break;
case 1:
if (bpp != 1 && bpp != 8) goto cce;
break;
case 4:
if (cprn_device->cmyk) {
if (bpp >= 8) break;
}
case 3:
if (bpp == 1 || bpp == 3 || bpp == 8 || bpp == 16
|| bpp == 24 || bpp == 32) {
break;
}
cce: default: return gs_error_rangecheck;
}
if (cprn_device->cmyk) {
if (cprn_device->cmyk > 0) {
ci->num_components = ccomps ? ccomps : (bpp < 8 ? 1 : 4);
} else {
ci->num_components = ccomps ? ccomps : (bpp < 8 ? 1 : 3);
}
if (bpp != 1 && ci->num_components == 1) { /* We do dithered grays. */
bpp = bpp < 8 ? 8 : bpp;
}
ci->max_color = (1 << (bpp >> 2)) - 1;
ci->max_gray = (bpp >= 8 ? 255 : 1);
if (ci->num_components == 1) {
ci->dither_grays = (bpp >= 8 ? 5 : 2);
ci->dither_colors = (bpp >= 8 ? 5 : bpp > 1 ? 2 : 0);
} else {
ci->dither_grays = (bpp > 8 ? 5 : 2);
ci->dither_colors = (bpp > 8 ? 5 : bpp > 1 ? 2 : 0);
}
} else {
ci->num_components = (bpp == 1 || bpp == 8 ? 1 : 3);
ci->max_color = (bpp >= 8 ? 255 : bpp > 1 ? 1 : 0);
ci->max_gray = (bpp >= 8 ? 255 : 1);
ci->dither_grays = (bpp >= 8 ? 5 : 2);
ci->dither_colors = (bpp >= 8 ? 5 : bpp > 1 ? 2 : 0);
}
ci->depth = ((bpp > 1) && (bpp < 8) ? 8 : bpp);
return 0;
}
/* new_bpp == save_bpp or new_bpp == 0 means don't change bpp.
ccomps == 0 means don't change number of color comps.
If new_bpp != 0, it must be the value of the BitsPerPixel element of
the plist; real_bpp may differ from new_bpp.
*/
private int
cdj_put_param_bpp(gx_device *pdev, gs_param_list *plist, int new_bpp,
int real_bpp, int ccomps)
{
if (new_bpp == 0 && ccomps == 0)
return gdev_prn_put_params(pdev, plist);
else
{
gx_device_color_info save_info;
int save_bpp;
int code;
save_info = pdev->color_info;
save_bpp = save_info.depth;
#define save_ccomps save_info.num_components
if ( save_bpp == 8 && save_ccomps == 3 && !cprn_device->cmyk)
save_bpp = 3;
code = cdj_set_bpp(pdev, real_bpp, ccomps);
if ( code < 0 ) {
param_signal_error(plist, "BitsPerPixel", code);
param_signal_error(plist, "ProcessColorModel", code);
return code;
}
pdev->color_info.depth = new_bpp; /* cdj_set_bpp maps 3/6 to 8 */
code = gdev_prn_put_params(pdev, plist);
if ( code < 0 )
{ cdj_set_bpp(pdev, save_bpp, save_ccomps);
return code;
}
cdj_set_bpp(pdev, real_bpp, ccomps); /* reset depth if needed */
if ((cdj->color_info.depth != save_bpp ||
(ccomps != 0 && ccomps != save_ccomps))
&& pdev->is_open )
return gs_closedevice(pdev);
return 0;
#undef save_ccomps
}
}
/* This returns either the number of pixels in a scan line, or the number
* of bytes required to store the line, both clipped to the page margins */
private uint
gdev_prn_rasterwidth(const gx_device_printer *pdev, int pixelcount)
{
ulong raster_width =
pdev->width - pdev->x_pixels_per_inch * (dev_l_margin(pdev) + dev_r_margin(pdev));
return (pixelcount ?
(uint)raster_width :
(uint)((raster_width * pdev->color_info.depth + 7) >> 3));
}
/* Functions for manipulation params strings */
private const byte*
paramValueToString(const stringParamDescription* params, int value)
{
for (; params->p_name; ++params) {
if (params->p_value == value) {
return (const byte *)params->p_name;
}
}
return (const byte*) 0;
}
private int
paramStringValue(const stringParamDescription* params,
const byte* name, int namelen, int* value)
{
for (; params->p_name; ++params) {
if (strncmp(params->p_name, (char *)name, namelen) == 0 &&
params->p_name[namelen] == 0) {
*value = params->p_value;
return 1;
}
}
return 0;
}
private int
put_param_string(gs_param_list* plist,
const byte* pname, gs_param_string* pstring,
const stringParamDescription* params, int *pvalue, int code)
{
int ncode;
if ((ncode = param_read_string(plist, (char *)pname, pstring)) < 0) {
param_signal_error(plist, (char *)pname, code = ncode);
} else if (ncode == 1) {
pstring->data = 0, pstring->size = 0;
} else {
int value = 0;
if (paramStringValue(params, pstring->data, pstring->size,
&value) == 0) {
param_signal_error(plist, (char *)pname, code = gs_error_rangecheck);
} else {
*pvalue = value;
}
}
return code;
}
private int
get_param_string(gs_param_list* plist,
const byte* pname, gs_param_string* pstring,
const stringParamDescription* params, int pvalue, bool persist, int code)
{
int ncode;
pstring->data = paramValueToString(params, pvalue);
if (pstring->data == (byte*) 0) {
param_signal_error(plist, (char *)pname, ncode = gs_error_unknownerror);
} else {
pstring->size = strlen((char *)pstring->data);
pstring->persistent = persist;
}
if ((ncode = param_write_string(plist, (char *)pname, pstring)) < 0) {
code = ncode;
}
return code;
}
/*
* This taken from gsdparam.c. I hope it will be useable directly some day.
*
*/
private int
cdj_param_check_bytes(gs_param_list *plist, gs_param_name pname, const byte *str,
uint size, bool defined)
{ int code;
gs_param_string new_value;
switch ( code = param_read_string(plist, pname, &new_value) )
{
case 0:
if ( defined && new_value.size == size &&
!memcmp((const char *)str, (const char *)new_value.data,
size)
)
break;
code = gs_note_error(gs_error_rangecheck);
goto e;
default:
if ( param_read_null(plist, pname) == 0 )
return 1;
e: param_signal_error(plist, pname, code);
case 1:
;
}
return code;
}
/* This is original code. */
private int
cdj_param_check_float(gs_param_list *plist, gs_param_name pname, floatp fval,
bool defined)
{ int code;
float new_value;
switch ( code = param_read_float(plist, pname, &new_value) )
{
case 0:
if ( defined && new_value == fval)
break;
code = gs_note_error(gs_error_rangecheck);
goto e;
default:
if ( param_read_null(plist, pname) == 0 )
return 1;
e: param_signal_error(plist, pname, code);
case 1:
;
}
return code;
}
/* The following dithering algorithm has been kindly given to me (YA) by
* Klaus-Gunther Hess, I just adapted it for use with the code here. */
/*
(From KGH:)
Just about the features of the code:
- Stored Color-Values are BYTES in the order C-M-Y-K.
(Indices need to change with gdevcdj.c)
- There are individual THRESHOLDs and SPOTSIZEs for
the color-components. The following relation should
be maintained:
SPOTSIZE = 2 * THRESHOLD + 1
(The internal calculation is dedicated for limiting
ink-density at the 720x720DpI-Resolution of the
Epson-Printers, without loss of dynamic color-range)
- In addition to that there are EMIN & EMAX-Values
for the components. The Values are computed from
the dithering-algorithm and can be replaced by
constants, if neither the implementation nor
THRESHOLD and SPOTSIZE can change.
- The algorithm is tuned for speed. (K-only, if gray-
levels are detected, with EMIN/EMAX-clipping of
stored CMY-Errors. [Notice: cerr, merr, yerr are
*not* reset to zero! Clearing them would cause
regular patterns & "Halos" to appear!])
*/
/*
* Macros, that represent the undisturbed dithering-algorithm
*
* FSerror: compute the desired Value
* FSdecide: decision based on the value computed by FSerror
* FSdiffuse: distribute remaining error among pixels
*/
#define FSerror(Val,Erow,Ecol) (Val + Erow + ((7 * Ecol)>>4))
#define FSdecide(Error,Threshold,Spotsize,Pixel,Bit) \
if(Error > Threshold) {\
Pixel |= Bit;\
Error -= Spotsize;\
}
#define FSdiffuse(Error,Erow,Ecol,Eprev)\
Eprev += (3 * Error + 8)>>4;\
Erow = (5 * Error + Ecol + 8)>>4;\
Ecol = Error;
/*
* some aliases for values from the device-structure
*/
#define DIRECTION direction[0]
#define CMYK_THRESHOLD(I) threshold[I]
#define SPOTSIZE(I) spotsize[I]
#define EMIN(I) emin[I]
#define EMAX(I) emax[I]
#define NPIXEL (plane_size * 8)
#define IDX_C 1
#define IDX_M 2
#define IDX_Y 3
#define IDX_K 0
#define ODX_C 2
#define ODX_M 1
#define ODX_Y 0
#define ODX_K 3
private int
bjc_fscmyk(byte** inplanes, byte* outplanes[4][4], int** errplanes,
int plane_size, int scan) {
byte* err = (byte*) errplanes[0];
/* =========================================================== */
if(scan < 0) { /* scan < 0 -> initialize private buffer */
/* =========================================================== */
int p,i,v;
int *direction,*threshold,*spotsize,*emin,*emax;
int *errv,*errc;
/*
* allocate the error-buffer
*/
/*KGHorig
i = 4 * (5 + 1 + 1 + sd->stc.prt_pixels + 1) * sizeof(errv[0]);
if((sd->stc.err_size < i) || (NULL == sd->stc.err)) {
if(NULL != sd->stc.err)
gs_free(sd->stc.err,sd->stc.err_size,1,"stcm/err");
sd->stc.err_size = i;
sd->stc.err = gs_malloc(sd->stc.err_size,1,"stcm/err");
if(sd->stc.err == NULL) return_error(gs_error_VMerror);
}
*/
direction = (int *) err;
threshold = direction + 4;
spotsize = threshold + 4;
emin = spotsize + 4;
emax = emin + 4;
errc = emax + 4;
errv = errc + 2*4;
/*
* compute initial values
*/
DIRECTION = -1;
for(i = 0; i < 4; ++i) {
int j;
float maxv = 1.0;
/*KGHorig
if((sd->stc.xfer[i].size < 1) || (sd->stc.xfer[i].data == NULL)) {
maxv = 1.0;
} else {
maxv = 1.0/255.0;
for(j = 0; j < sd->stc.xfer[i].size; ++j)
if(maxv < sd->stc.xfer[i].data[j])
maxv = sd->stc.xfer[i].data[j];
}
*/
CMYK_THRESHOLD(i) = 127.0 / maxv + 0.5;
SPOTSIZE(i) = ((int) CMYK_THRESHOLD(i)<<1)+1;
j = CMYK_THRESHOLD(i); /* Maximum Error-Value */
errc[3] = 0;
FSdiffuse(CMYK_THRESHOLD(i),errv[0],errc[0],errv[-4]);
FSdiffuse(CMYK_THRESHOLD(i),errv[0],errc[0],errv[-4]);
EMAX(i) = errv[0];
errc[0] = 0;
FSdiffuse((-CMYK_THRESHOLD(i)),errv[0],errc[0],errv[-4]);
FSdiffuse((-CMYK_THRESHOLD(i)),errv[0],errc[0],errv[-4]);
EMIN(i) = errv[0];
}
#ifdef CDJ_DEBUG_FS
for(i = 0; i < 4; ++i) fprintf(stderr,
"CMYK_THRESHOLD(%d)=%5d, spotsize(%d)=%5d, emin(%d)=%5d, emax(%d)=%5d\n",
i,CMYK_THRESHOLD(i),i,SPOTSIZE(i),i,EMIN(i),i,EMAX(i));
#endif
for(i = 0; i < 4; ++i) errc[i] = 0;
for(p = 0; p < NPIXEL; ++p) {
for(i = 0; i < 4; ++i) {
/*KHGOrig
if(sd->stc.flags & STCDFLAG0) v = 0;
*/
if (0) v = 0; /* Must provide a default for that. */
else v = (rand() % SPOTSIZE(i)) - CMYK_THRESHOLD(i);
FSdiffuse(v,errv[i],errc[i],errv[i-4]);
}
errv += i;
}
/* =========================================================== */
} else { /* scan >= 0 -> scanline-processing */
/* =========================================================== */
int w,p,dir,thedir;
byte *out[4],pixel[4],bit;
/*KGHorig
int *width = outplanes[scan];
*/
int *direction = (int *) err;
int *threshold = direction + 4;
int *spotsize = threshold + 4;
int *emin = spotsize + 4;
int *emax = emin + 4;
int *errc = emax + 4;
int *errv = errc + 2*4;
int kerr,cerr,merr,yerr;
byte* in;
/*KGHorig
if(sd->stc.flags & STCDFLAG1) {
*/
if (0) { /* Eventually will provide a flag for this. */
cerr = merr = yerr = kerr = 0;
} else {
cerr = errc[0];
merr = errc[1];
yerr = errc[2];
kerr = errc[3];
}
out[0] = outplanes[scan + 2][ODX_C];
out[1] = outplanes[scan + 2][ODX_M];
out[2] = outplanes[scan + 2][ODX_Y];
out[3] = outplanes[scan + 2][ODX_K];
pixel[0] = pixel[1] = pixel[2] = pixel[3] = 0;
if(DIRECTION < 0) { /* scan == 0, run backward */
w = NPIXEL;
in = inplanes[2] + 4 * (NPIXEL - 1);
errv += (w-1)<<2;
dir = -4;
/*KGHorig
if(w > 8) for(p = 0; p < 4; ++p) out[p] += (w-1)>>3;
*/
thedir = -1;
for (p = 0; p < 4; ++p) {
out[p] += plane_size - 1;
}
} else { /* run forward */
w = 1;
in = inplanes[3] - 4 * NPIXEL;
dir = 4;
thedir = 1;
for (p = 0; p < 4; ++p) {
out[p] -= plane_size;
}
} /* run backward/forward */
/*KGHorig
if(0 == (sd->stc.flags & STCDFLAG1)) DIRECTION = -DIRECTION;
*/
if (1) DIRECTION = -DIRECTION; /* Scan in other direction. */
bit = 0x80>>((w-1) & 7);
w = (w+7)>>3;
for(p = NPIXEL; p; --p) { /* loop over pixels */
int cmy = in[IDX_C] | in[IDX_M] | in[IDX_Y];
int kv = FSerror(in[IDX_K],errv[3],kerr);
int cv;
FSdecide(kv,CMYK_THRESHOLD(3),SPOTSIZE(3),pixel[3],bit);
if(cmy) {
if(pixel[3] & bit) { /* black known to fire */
FSdiffuse(kv,errv[3],kerr,errv[3-dir]);
cv = FSerror(in[IDX_C],errv[0],cerr);
cv -= SPOTSIZE(0);
if ((cv+CMYK_THRESHOLD(0)) < 0) cv = -CMYK_THRESHOLD(0);
FSdiffuse(cv,errv[0],cerr,errv[0-dir]);
cv = FSerror(in[IDX_M],errv[1],merr);
cv -= SPOTSIZE(1);
if ((cv+CMYK_THRESHOLD(1)) < 0) cv = -CMYK_THRESHOLD(1);
FSdiffuse(cv,errv[1],merr,errv[1-dir]);
cv = FSerror(in[IDX_Y],errv[2],yerr);
cv -= SPOTSIZE(2);
if ((cv+CMYK_THRESHOLD(2)) < 0) cv = -CMYK_THRESHOLD(2);
FSdiffuse(cv,errv[2],yerr,errv[2-dir]);
} else {
cv = FSerror(in[IDX_C],errv[0],cerr);
FSdecide(cv,CMYK_THRESHOLD(0),SPOTSIZE(0),pixel[0],bit);
FSdiffuse(cv,errv[0],cerr,errv[0-dir]);
cv = FSerror(in[IDX_M],errv[1],merr);
FSdecide(cv,CMYK_THRESHOLD(1),SPOTSIZE(1),pixel[1],bit);
FSdiffuse(cv,errv[1],merr,errv[1-dir]);
cv = FSerror(in[IDX_Y],errv[2],yerr);
FSdecide(cv,CMYK_THRESHOLD(2),SPOTSIZE(2),pixel[2],bit);
FSdiffuse(cv,errv[2],yerr,errv[2-dir]);
if(pixel[0] & pixel[1] & pixel[2] & bit) {
pixel[0] &= ~bit;
pixel[1] &= ~bit;
pixel[2] &= ~bit;
pixel[3] |= bit;
kv -= SPOTSIZE(3);
if ((kv+CMYK_THRESHOLD(3)) < 0) kv = -CMYK_THRESHOLD(0);
FSdiffuse(kv,errv[3],kerr,errv[3-dir]);
}
}
} else {
FSdiffuse(kv,errv[3],kerr,errv[3-dir]);
if( errv[0] > EMAX(0)) errv[0] = EMAX(0);
else if(errv[0] < EMIN(0)) errv[0] = EMIN(0);
if( errv[1] > EMAX(1)) errv[1] = EMAX(1);
else if(errv[1] < EMIN(1)) errv[1] = EMIN(1);
if( errv[2] > EMAX(2)) errv[2] = EMAX(2);
else if(errv[2] < EMIN(2)) errv[2] = EMIN(2);
}
/*
* Adjust indices
*/
bit = dir > 0 ? (bit>>1) : (bit<<1);
if(bit == 0) {
/*KGHorig
if(((*out[0] = pixel[0]) != 0) && (width[0] < w)) width[0] = w;
if(((*out[1] = pixel[1]) != 0) && (width[1] < w)) width[1] = w;
if(((*out[2] = pixel[2]) != 0) && (width[2] < w)) width[2] = w;
if(((*out[3] = pixel[3]) != 0) && (width[3] < w)) width[3] = w;
*/
*out[0] = pixel[0];
*out[1] = pixel[1];
*out[2] = pixel[2];
*out[3] = pixel[3];
out[0] += thedir; out[1] += thedir;
out[2] += thedir; out[3] += thedir;
pixel[0] = pixel[1] = pixel[2] = pixel[3] = 0;
if(dir > 0) bit = 0x80;
else bit = 0x01;
w += dir>>2;
}
in += dir;
errv += dir;
} /* loop over pixels */
/*KGHorig
if(0 == (sd->stc.flags & STCDFLAG1)) {
*/
if (1) {
cerr = errc[0] = cerr;
merr = errc[1] = merr;
yerr = errc[2] = yerr;
kerr = errc[3] = kerr;
}
/* =========================================================== */
} /* initialization or scanline-Processing */
/* =========================================================== */
return 0;
}